Abstract:This paper studies the problem of hybrid holographic beamforming for sum-rate maximization in a communication system assisted by a reconfigurable holographic surface. Existing methodologies predominantly rely on gradient-based or approximation techniques necessitating iterative optimization for each update of the holographic response, which imposes substantial computational overhead. To address these limitations, we establish a mathematical relationship between the mean squared error (MSE) criterion and the holographic response of the RHS to enable alternating optimization based on the minimum MSE (MMSE). Our analysis demonstrates that this relationship exhibits a quadratic dependency on each element of the holographic beamformer. Exploiting this property, we derive closed-form optimal expressions for updating the holographic beamforming weights. Our complexity analysis indicates that the proposed approach exhibits only linear complexity in terms of the RHS size, thus, ensuring scalability for large-scale deployments. The presented simulation results validate the effectiveness of our MMSE-based holographic approach, providing useful insights.
Abstract:Beyond diagonal reconfigurable intelligent surfaces (BD-RIS) have emerged as a transformative technology for enhancing wireless communication by intelligently manipulating the propagation environment. This paper explores the potential of BD-RIS in improving cognitive radio enabled multilayer non-terrestrial networks (NTNs). It is assumed that a high-altitude platform station (HAPS) has set up the primary network, while an uncrewed aerial vehicle (UAV) establishes the secondary network in the HAPS footprint. We formulate a joint optimization problem to maximize the secrecy rate by optimizing BD-RIS phase shifts and the secondary transmitter power allocation while controlling the interference temperature from the secondary network to the primary network. To solve this problem efficiently, we decouple the original problem into two sub-problems, which are solved iteratively by relying on alternating optimization. Simulation results demonstrate the effectiveness of BD-RIS in cognitive radio-enabled multilayer NTNs to accommodate the secondary network while satisfying the constraints imposed from the primary network.
Abstract:Beyond diagonal reconfigurable intelligent surfaces (BD-RIS) have emerged as a transformative technology for enhancing wireless communication by intelligently manipulating the propagation environment. Its interconnected elements offer enhanced control over signal redirection, making it a promising solution for integrated terrestrial and non-terrestrial networks (NTNs). This paper explores the potential of BD-RIS in improving cognitive radio enabled multilayer non-terrestrial networks. We formulate a joint optimization problem that maximizes the achievable spectral efficiency by optimizing BD-RIS phase shifts and secondary transmitter power allocation while controlling the interference temperature from the secondary network to the primary network. To solve this problem efficiently, we decouple the original problem and propose a novel solution based on an alternating optimization approach. Simulation results demonstrate the effectiveness of BD-RIS in cognitive radio enabled multilayer NTNs.
Abstract:Beyond Diagonal Reconfigurable Intelligent Surfaces (BD-RIS) represent a groundbreaking innovation in sixth-generation (6G) wireless networks, enabling unprecedented control over wireless propagation environments compared to conventional diagonal RIS (D-RIS). This survey provides a comprehensive analysis of BD-RIS, detailing its architectures, operational principles, and mathematical modeling while highlighting its performance benefits. BD-RIS classifications, including single-connected, fully-connected, and group-connected architectures, and their reflective, transmissive, hybrid, and multi-sector operating modes are examined. Recent advances in BD-RIS-enabled 6G networks are reviewed, focusing on critical areas such as channel estimation, sum-rate and spectral efficiency optimization, energy efficiency enhancement, and security. The survey identifies fundamental challenges in BD-RIS research, including hardware design limitations, adaptive channel estimation, and the impact of non-ideal hardware effects. Future research directions for BD-RIS are proposed, emphasizing the integration of artificial intelligence and machine learning (AI/ML), joint optimization of communication and sensing, and enhanced physical layer security (PLS). This study concludes by underscoring BD-RIS's transformative potential to redefine 6G wireless networks, offering valuable insights and lessons for future research and development.
Abstract:Reconfigurable holographic surfaces (RHS) have emerged as a transformative material technology, enabling dynamic control of electromagnetic waves to generate versatile holographic beam patterns. This paper addresses the problem of secrecy rate maximization for an RHS-assisted systems by joint designing the digital beamforming, artificial noise (AN), and the analog holographic beamforming. However, such a problem results to be non-convex and challenging. Therefore, to solve it, a novel alternating optimization algorithm based on the majorization-maximization (MM) framework for RHS-assisted systems is proposed, which rely on surrogate functions to facilitate efficient and reliable optimization. In the proposed approach, digital beamforming design ensures directed signal power toward the legitimate user while minimizing leakage to the unintended receiver. The AN generation method projects noise into the null space of the legitimate user channel, aligning it with the unintended receiver channel to degrade its signal quality. Finally, the holographic beamforming weights are optimized to refine the wavefronts for enhanced secrecy rate performance Simulation results validate the effectiveness of the proposed framework, demonstrating significant improvements in secrecy rate compared to the benchmark method.
Abstract:This paper pioneers the field of multi-user holographic unmanned aerial vehicle (UAV) communications, laying a solid foundation for future innovations in next-generation aerial wireless networks. The study focuses on the challenging problem of jointly optimizing hybrid holographic beamforming and 3D UAV positioning in scenarios where the UAV is equipped with a reconfigurable holographic surface (RHS) instead of conventional phased array antennas. Using the unique capabilities of RHSs, the system dynamically adjusts both the position of the UAV and its hybrid beamforming properties to maximize the sum rate of the network. To address this complex optimization problem, we propose an iterative algorithm combining zero-forcing digital beamforming and a gradient ascent approach for the holographic patterns and the 3D position optimization, while ensuring practical feasibility constraints. The algorithm is designed to effectively balance the trade-offs between power, beamforming, and UAV trajectory constraints, enabling adaptive and efficient communications, while assuring a monotonic increase in the sum-rate performance. Our numerical investigations demonstrate that the significant performance improvements with the proposed approach over the benchmark methods, showcasing enhanced sum rate and system adaptability under varying conditions.
Abstract:Reconfigurable holographic surfaces (RHS) have emerged as a transformative material technology, enabling dynamic control of electromagnetic waves to generate versatile holographic beam patterns. This paper addresses the problem of joint hybrid holographic beamforming and user scheduling under per-user minimum quality-of-service (QoS) constraints, a critical challenge in resource-constrained networks. However, such a problem results in mixed-integer non-convex optimization, making it difficult to identify feasible solutions efficiently. To overcome this challenge, we propose a novel iterative optimization framework that jointly solves the problem to maximize the RHS-assisted network sum-rate, efficiently managing holographic beamforming patterns, dynamically scheduling users, and ensuring the minimum QoS requirements for each scheduled user. The proposed framework relies on zero-forcing digital beamforming, gradient-ascent-based holographic beamformer optimization, and a greedy user selection principle. Our extensive simulation results validate the effectiveness of the proposed scheme, demonstrating their superior performance compared to the benchmark algorithms in terms of sum-rate performance, while meeting the minimum per-user QoS constraints
Abstract:Joint Communication and Sensing (JCAS) technology facilitates the seamless integration of communication and sensing functionalities within a unified framework, enhancing spectral efficiency, reducing hardware complexity, and enabling simultaneous data transmission and environmental perception. This paper explores the potential of holographic JCAS systems by leveraging reconfigurable holographic surfaces (RHS) to achieve high-resolution hybrid holographic beamforming while simultaneously sensing the environment. As the holographic transceivers are governed by arbitrary antenna spacing, we first derive exact Cram\'er-Rao Bounds (CRBs) for azimuth and elevation angles to rigorously characterize the three-dimensional (3D) sensing accuracy. To optimize the system performance, we propose a novel weighted multi-objective problem formulation that aims to simultaneously maximize the communication rate and minimize the CRBs. However, this formulation is highly non-convex due to the inverse dependence of the CRB on the optimization variables, making the solution extremely challenging. To address this, we propose a novel algorithmic framework based on the Majorization-Maximization (MM) principle, employing alternating optimization to efficiently solve the problem. The proposed method relies on the closed-form surrogate functions that majorize the original objective derived herein, enabling tractable optimization. Simulation results are presented to validate the effectiveness of the proposed framework under diverse system configurations, demonstrating its potential for next-generation holographic JCAS systems.
Abstract:Reconfigurable intelligent surface (RIS) technology has emerged as a promising enabler for next-generation wireless networks, offering a paradigm shift from passive environments to programmable radio wave propagation. Despite the potential of diagonal RIS (D-RIS), its limited wave manipulation capability restricts performance gains. In this paper, we investigate the burgeoning concept of beyond-diagonal RIS (BD-RIS), which incorporates non-diagonal elements in its scattering matrix to deliver more fine-grained control of electromagnetic wavefronts. We begin by discussing the limitations of traditional D-RIS and introduce key BD-RIS architectures with different operating modes. We then highlight the features that make BD-RIS particularly advantageous for 6G IoT applications, including advanced beamforming, enhanced interference mitigation, and flexible coverage. A case study on BD-RIS-assisted vehicle-to-vehicle (V2V) communication in an underlay cellular network demonstrates considerable improvements in spectral efficiency when compared to D-RIS and conventional systems. Lastly, we present current challenges such as hardware design complexity, channel estimation, and non-ideal hardware effects, and propose future research directions involving AI-driven optimization, joint communication and sensing, and physical layer security. Our findings illustrate the transformative potential of BD-RIS in shaping high-performance, scalable, and reliable 6G IoT networks.
Abstract:Satellite Networks (SN) have traditionally been instrumental in providing two key services: communications and sensing. Communications satellites enable global connectivity, while sensing satellites facilitate applications such as Earth observation, navigation, and disaster management. However, the emergence of novel use cases and the exponential growth in service demands make the independent evolution of communication and sensing payloads increasingly impractical. Addressing this challenge requires innovative approaches to optimize satellite resources. Joint Communications and Sensing (JCAS) technology represents a transformative paradigm for SN. By integrating communication and sensing functionalities into unified hardware platforms, JCAS enhances spectral efficiency, reduces operational costs, and minimizes hardware redundancies. This paper explores the potential of JCAS in advancing the next-generation space era, highlighting its role in emerging applications. Furthermore, it identifies critical challenges, such as waveform design, Doppler effect mitigation, and multi-target detection, that remain open for future research. Through these discussions, we aim to stimulate further research into the transformative potential of JCAS in addressing the demands of 6G and beyond SN.