This paper studies the problem of hybrid holographic beamforming for sum-rate maximization in a communication system assisted by a reconfigurable holographic surface. Existing methodologies predominantly rely on gradient-based or approximation techniques necessitating iterative optimization for each update of the holographic response, which imposes substantial computational overhead. To address these limitations, we establish a mathematical relationship between the mean squared error (MSE) criterion and the holographic response of the RHS to enable alternating optimization based on the minimum MSE (MMSE). Our analysis demonstrates that this relationship exhibits a quadratic dependency on each element of the holographic beamformer. Exploiting this property, we derive closed-form optimal expressions for updating the holographic beamforming weights. Our complexity analysis indicates that the proposed approach exhibits only linear complexity in terms of the RHS size, thus, ensuring scalability for large-scale deployments. The presented simulation results validate the effectiveness of our MMSE-based holographic approach, providing useful insights.