CentraleSupelec-University, Paris, France
Abstract:The employment of stochastic geometry for the analysis and design of ultra dense networks (UDNs) has provided significant insights into network densification. In addition to the characterization of the network performance and behavior, these tools can also be exploited toward solving complex optimization problems that could maximize the capacity benefits arising in UDNs. However, this is preconditioned on the existence of tractable closed form expressions for the considered figures of merit. In this course, the present paper introduces an accurate approximation for the moment generating function (MGF) of the aggregate other-cell interference created by base stations whose positions follow a Poisson point process of given spatial density. Given the pivotal role of the MGF of the aggregate interference in stochastic geometry and the tractability of the derived MGF, the latter can be employed to substantially simplify ensuing stochastic geometry analyses. Subsequently, the present paper employs the introduced MGF to provide closed form expressions for the downlink ergodic capacity for the interference limited case, and validates the accuracy of these expressions by the use of extensive Monte Carlo simulations. The derived expressions depend on the density of users and base stations, setting out a densification road map for network operators and designers of significant value.
Abstract:Stacked intelligent metasurface (SIM) is an emerging technology that capitalizes on reconfigurable metasurfaces for several applications in wireless communications. SIM is considered an enabler for integrating communication, sensing and computing in a unique platform. In this paper, we offer a survey on the state of the art of SIM for wireless communications.
Abstract:Multiport network theory (MNT) is a powerful analytical tool for modeling and optimizing complex systems based on circuit models. We present an overview of current research on the application of MNT to the development of electromagnetically consistent models for programmable metasurfaces, with focus on reconfigurable intelligent surfaces for wireless communications.
Abstract:Cell-free (CF) massive multiple-input multiple-output (mMIMO) and reconfigurable intelligent surface (RIS) are two advanced transceiver technologies for realizing future sixth-generation (6G) networks. In this paper, we investigate the joint precoding and access point (AP) selection for energy efficient RIS-aided CF mMIMO system. To address the associated computational complexity and communication power consumption, we advocate for user-centric dynamic networks in which each user is served by a subset of APs rather than by all of them. Based on the user-centric network, we formulate a joint precoding and AP selection problem to maximize the energy efficiency (EE) of the considered system. To solve this complex nonconvex problem, we propose an innovative double-layer multi-agent reinforcement learning (MARL)-based scheme. Moreover, we propose an adaptive power threshold-based AP selection scheme to further enhance the EE of the considered system. To reduce the computational complexity of the RIS-aided CF mMIMO system, we introduce a fuzzy logic (FL) strategy into the MARL scheme to accelerate convergence. The simulation results show that the proposed FL-based MARL cooperative architecture effectively improves EE performance, offering a 85\% enhancement over the zero-forcing (ZF) method, and achieves faster convergence speed compared with MARL. It is important to note that increasing the transmission power of the APs or the number of RIS elements can effectively enhance the spectral efficiency (SE) performance, which also leads to an increase in power consumption, resulting in a non-trivial trade-off between the quality of service and EE performance.
Abstract:The performance of modern wireless communication systems is typically limited by interference. The impact of interference can be even more severe in ultra-reliable and low-latency communication (URLLC) use cases. A powerful tool for managing interference is rate splitting multiple access (RSMA), which encompasses many multiple-access technologies like non-orthogonal multiple access (NOMA), spatial division multiple access (SDMA), and broadcasting. Another effective technology to enhance the performance of URLLC systems and mitigate interference is constituted by reconfigurable intelligent surfaces (RISs). This paper develops RSMA schemes for multi-user multiple-input multiple-output (MIMO) RIS-aided broadcast channels (BCs) based on finite block length (FBL) coding. We show that RSMA and RISs can substantially improve the spectral efficiency (SE) and energy efficiency (EE) of MIMO RIS-aided URLLC systems. Additionally, the gain of employing RSMA and RISs noticeably increases when the reliability and latency constraints are more stringent. Furthermore, RISs impact RSMA differently, depending on the user load. If the system is underloaded, RISs are able to manage the interference sufficiently well, making the gains of RSMA small. However, when the user load is high, RISs and RSMA become synergetic.
Abstract:We analyze the finite-block-length rate region of wireless systems aided by reconfigurable intelligent surfaces (RISs), employing treating interference as noise. We consider three nearly passive RIS architectures, including locally passive (LP) diagonal (D), globally passive (GP) D, and GP beyond diagonal (BD) RISs. In a GP RIS, the power constraint is applied globally to the whole surface, while some elements may amplify the incident signal locally. The considered RIS architectures provide substantial performance gains compared with systems operating without RIS. GP BD-RIS outperforms, at the price of increasing the complexity, LP and GP D-RIS as it enlarges the feasible set of allowed solutions. However, the gain provided by BD-RIS decreases with the number of RIS elements. Additionally, deploying RISs provides higher gains as the reliability/latency requirement becomes more stringent.
Abstract:Holographic multiple-input multiple-output (HMIMO) is an emerging technology for 6G communications, in which numerous antenna units are integrated in a limited space. As the HMIMO array aperture expands, the near-field region of the array is dramatically enlarged, resulting in more users being located in the near-field region. This creates new opportunities for wireless communications. In this context, the evaluation of the spatial degrees of freedom (DoF) of HMIMO multi-user systems in near-field channels is an open problem, as the methods of analysis utilized for evaluating the DoF in far-field channels cannnot be directly applied due to the different propagation characteristics. In this paper, we propose a novel method to calculate the DoF of HMIMO in multi-user near-field channels. We first derive the DoF for a single user in the near field, and then extend the analysis to multi-user scenarios. In this latter scenario, we focus on the impact of spatial blocking between HMIMO users. The derived analytical framework reveals that the DoF of HMIMO in multi-user near-field channels is not in general given by the sum of the DoF of the HMIMO single-user setting. Simulation results demonstrate that the proposed method can accurately estimate the DoF in HMIMO multi-user near-field channels in the presence of spatial blocking.
Abstract:This study focuses on the optimization of a single-cell multi-user multiple-input multiple-output (MIMO) system with multiple large-size reconfigurable intelligent surfaces (RISs). The overall transmit power is minimized by optimizing the precoding coefficients and the RIS configuration, with constraints on users' signal-to-interference-plus-noise ratios (SINRs). The minimization problem is divided into two sub-problems and solved by means of an iterative alternating optimization (AO) approach. The first sub-problem focuses on finding the best precoder design. The second sub-problem optimizes the configuration of the RISs by partitioning them into smaller tiles. Each tile is then configured as a combination of pre-defined configurations. This allows the efficient optimization of RISs, especially in scenarios where the computational complexity would be prohibitive using traditional approaches. Simulation results show the good performance and limited complexity of the proposed method in comparison to benchmark schemes.
Abstract:This paper addresses the challenges of throughput optimization in wireless cache-aided cooperative networks. We propose an opportunistic cooperative probing and scheduling strategy for efficient content delivery. The strategy involves the base station probing the relaying channels and cache states of multiple cooperative nodes, thereby enabling opportunistic user scheduling for content delivery. Leveraging the theory of Sequentially Planned Decision (SPD) optimization, we dynamically formulate decisions on cooperative probing and stopping time. Our proposed Reward Expected Thresholds (RET)-based strategy optimizes opportunistic probing and scheduling. This approach significantly enhances system throughput by exploiting gains from local caching, cooperative transmission and time diversity. Simulations confirm the effectiveness and practicality of the proposed Media Access Control (MAC) strategy.
Abstract:In this paper, we develop energy-efficient schemes for multi-user multiple-input single-output (MISO) broadcast channels (BCs), assisted by reconfigurable intelligent surfaces (RISs). To this end, we consider three architectures of RIS: locally passive diagonal (LP-D), globally passive diagonal (GP-D), and globally passive beyond diagonal (GP-BD). In a globally passive RIS, the power of the output signal of the RIS is not greater than its input power, but some RIS elements can amplify the signal. In a locally passive RIS, every element cannot amplify the incident signal. We show that these RIS architectures can substantially improve energy efficiency (EE) if the static power of the RIS elements is not too high. Moreover, GP-BD RIS, which has a higher complexity and static power than LP-D RIS and GP-D RIS, provides better spectral efficiency, but its EE performance highly depends on the static power consumption and may be worse than its diagonal counterparts.