Abstract:In this paper, we investigate the performance of an integrated sensing and communication (ISAC) system within a cell-free massive multiple-input multiple-output (MIMO) system. Each access point (AP) operates in the millimeter-wave (mmWave) frequency band. The APs jointly serve the user equipments (UEs) in the downlink while simultaneously detecting a target through dedicated sensing beams, which are directed toward a reconfigurable intelligent surface (RIS). Although the AP-RIS, RIS-target, and AP-target channels have both line-of-sight (LoS) and non-line-of-sight (NLoS) parts, it is assumed only knowledge of the LoS paths is available. A key contribution of this study is the consideration of clutter, which degrades the target detection if not handled. We propose an algorithm to alternatively optimize the transmit power allocation and the RIS phase-shift matrix, maximizing the target signal-to-clutter-plus-noise ratio (SCNR) while ensuring a minimum signal-to-interference-plus-noise ratio (SINR) for the UEs. Numerical results demonstrate that exploiting clutter subspace significantly enhances detection probability, particularly at high clutter-to-noise ratios, and reveal that an increased number of transmit side clusters impair detection performance. Finally, we highlight the performance gains achieved using a dedicated sensing stream.
Abstract:We study agents acting in an unknown environment where the agent's goal is to find a robust policy. We consider robust policies as policies that achieve high cumulative rewards for all possible environments. To this end, we consider agents minimizing the maximum regret over different environment parameters, leading to the study of minimax regret. This research focuses on deriving information-theoretic bounds for minimax regret in Markov Decision Processes (MDPs) with a finite time horizon. Building on concepts from supervised learning, such as minimum excess risk (MER) and minimax excess risk, we use recent bounds on the Bayesian regret to derive minimax regret bounds. Specifically, we establish minimax theorems and use bounds on the Bayesian regret to perform minimax regret analysis using these minimax theorems. Our contributions include defining a suitable minimax regret in the context of MDPs, finding information-theoretic bounds for it, and applying these bounds in various scenarios.
Abstract:Integrated sensing and communications (ISAC) is a promising component of 6G networks, fusing communication and radar technologies to facilitate new services. Additionally, the use of extremely large-scale antenna arrays (ELLA) at the ISAC common receiver not only facilitates terahertz-rate communication links but also significantly enhances the accuracy of target detection in radar applications. In practical scenarios, communication scatterers and radar targets often reside in close proximity to the ISAC receiver. This, combined with the use of ELLA, fundamentally alters the electromagnetic characteristics of wireless and radar channels, shifting from far-field planar-wave propagation to near-field spherical wave propagation. Under the far-field planar-wave model, the phase of the array response vector varies linearly with the antenna index. In contrast, in the near-field spherical wave model, this phase relationship becomes nonlinear. This shift presents a fundamental challenge: the widely-used Fourier analysis can no longer be directly applied for target detection and communication channel estimation at the ISAC common receiver. In this work, we propose a feasible solution to address this fundamental issue. Specifically, we demonstrate that there exists a high-dimensional space in which the phase nonlinearity can be expressed as linear. Leveraging this insight, we develop a lifted super-resolution framework that simultaneously performs communication channel estimation and extracts target parameters with high precision.
Abstract:Hyperspherical Prototypical Learning (HPL) is a supervised approach to representation learning that designs class prototypes on the unit hypersphere. The prototypes bias the representations to class separation in a scale invariant and known geometry. Previous approaches to HPL have either of the following shortcomings: (i) they follow an unprincipled optimisation procedure; or (ii) they are theoretically sound, but are constrained to only one possible latent dimension. In this paper, we address both shortcomings. To address (i), we present a principled optimisation procedure whose solution we show is optimal. To address (ii), we construct well-separated prototypes in a wide range of dimensions using linear block codes. Additionally, we give a full characterisation of the optimal prototype placement in terms of achievable and converse bounds, showing that our proposed methods are near-optimal.
Abstract:In this work, we consider the matrix completion problem, where the objective is to reconstruct a low-rank matrix from a few observed entries. A commonly employed approach involves nuclear norm minimization. For this method to succeed, the number of observed entries needs to scale at least proportional to both the rank of the ground-truth matrix and the coherence parameter. While the only prior information is oftentimes the low-rank nature of the ground-truth matrix, in various real-world scenarios, additional knowledge about the ground-truth low-rank matrix is available. For instance, in collaborative filtering, Netflix problem, and dynamic channel estimation in wireless communications, we have partial or full knowledge about the signal subspace in advance. Specifically, we are aware of some subspaces that form multiple angles with the column and row spaces of the ground-truth matrix. Leveraging this valuable information has the potential to significantly reduce the required number of observations. To this end, we introduce a multi-weight nuclear norm optimization problem that concurrently promotes the low-rank property as well the information about the available subspaces. The proposed weights are tailored to penalize each angle corresponding to each basis of the prior subspace independently. We further propose an optimal weight selection strategy by minimizing the coherence parameter of the ground-truth matrix, which is equivalent to minimizing the required number of observations. Simulation results validate the advantages of incorporating multiple weights in the completion procedure. Specifically, our proposed multi-weight optimization problem demonstrates a substantial reduction in the required number of observations compared to the state-of-the-art methods.
Abstract:This work investigates a multi-user, multi-antenna uplink wireless system, where multiple users transmit signals to a base station. Previous research has explored the potential for linear growth in spectral efficiency by employing multiple transmit and receive antennas. This gain depends on the quality of channel state information and uncorrelated antennas. However, spatial correlations, arising from closely-spaced antennas, and channel aging effects, stemming from the difference between the channel at pilot and data time instances, can substantially counteract these benefits and degrade the transmission rate, especially in non-stationary environments. To address these challenges, this work introduces a real-time beamforming framework to compensate for the spatial correlation effect. A channel estimation scheme is then developed, leveraging temporal channel correlations and considering mobile device velocity and antenna spacing. Subsequently, an expression approximating the average spectral efficiency is obtained, dependent on pilot spacing, pilot and data powers, and beamforming vectors. By maximizing this expression, optimal parameters are identified. Numerical results reveal the effectiveness of the proposed approach compared to prior works. Moreover, optimal pilot spacing remains unaffected by interference components such as path loss and the velocity of interference users. The impact of interference components also diminishes with an increasing number of transmit antennas.
Abstract:In this work, we address the challenge of accurately obtaining channel state information at the transmitter (CSIT) for frequency division duplexing (FDD) multiple input multiple output systems. Although CSIT is vital for maximizing spatial multiplexing gains, traditional CSIT estimation methods often suffer from impracticality due to the substantial training and feedback overhead they require. To address this challenge, we leverage two sources of prior information simultaneously: the presence of limited local scatterers at the base station (BS) and the time-varying characteristics of the channel. The former results in a redundant angular sparsity of users' channels exceeding the spatial dimension (i.e., the number of BS antennas), while the latter provides a prior non-uniform distribution in the angular domain. We propose a weighted optimization framework that simultaneously reflects both of these features. The optimal weights are then obtained by minimizing the expected recovery error of the optimization problem. This establishes an analytical closed-form relationship between the optimal weights and the angular domain characteristics. Numerical experiments verify the effectiveness of our proposed approach in reducing the recovery error and consequently resulting in decreased training and feedback overhead.
Abstract:This work considers an uplink wireless communication system where multiple users with multiple antennas transmit data frames over dynamic channels. Previous studies have shown that multiple transmit and receive antennas can substantially enhance the sum-capacity of all users when the channel is known at the transmitter and in the case of uncorrelated transmit and receive antennas. However, spatial correlations stemming from close proximity of transmit antennas and channel variation between pilot and data time slots, known as channel aging, can substantially degrade the transmission rate if they are not properly into account. In this work, we provide an analytical framework to concurrently exploit both of these features. Specifically, we first propose a beamforming framework to capture spatial correlations. Then, based on random matrix theory tools, we introduce a deterministic expression that approximates the average sum-capacity of all users. Subsequently, we obtain the optimal values of pilot spacing and beamforming vectors upon maximizing this expression. Simulation results show the impacts of path loss, velocity of mobile users and Rician factor on the resulting sum-capacity and underscore the efficacy of our methodology compared to prior works.
Abstract:Integrated sensing and communication (ISAC) has already established itself as a promising solution to the spectrum scarcity problem, even more so when paired with a reconfigurable intelligent surface (RIS) as RISs can shape the propagation environment by adjusting their phase-shift coefficients. Albeit the potential performance gain, a RIS also poses a security threat to the system: in this paper, we explore both sides of the RIS presence in a multi-user MIMO (multiple-input multiple-output) ISAC network. We first develop an alternating optimization algorithm, obtaining the active and passive beamforming vectors maximizing the sensing signal-to-noise ratio (SNR) under minimum signal-to-interference-plus-noise ratio (SINR) constraints for the communication users and finite power budget. We also investigate the destructive potential of RIS by devising a RIS phase-shift optimization algorithm that minimizes sensing SNR while preserving the same minimum communication SINR previously guaranteed by the system. We further investigate the impact of the RIS's individual element failures on the system performances. The simulation results show that the RIS performance-boosting potential is as good as its destructive one and that both of our optimization strategies show some resilience towards the investigated impairments.
Abstract:We investigate federated learning (FL) in the presence of stragglers, with emphasis on wireless scenarios where the power-constrained edge devices collaboratively train a global model on their local datasets and transmit local model updates through fading channels. To tackle stragglers resulting from link disruptions without requiring accurate prior information on connectivity or dataset sharing, we propose a gradient coding (GC) scheme based on cooperative communication, which remains valid for general collaborative federated learning. Furthermore, we conduct an outage analysis of the proposed scheme, based on which we conduct the convergence analysis. The simulation results reveal the superiority of the proposed strategy in the presence of stragglers, especially under imbalanced data distribution.