Shitz
Abstract:Deploying artificial intelligence (AI) models on edge devices involves a delicate balance between meeting stringent complexity constraints, such as limited memory and energy resources, and ensuring reliable performance in sensitive decision-making tasks. One way to enhance reliability is through uncertainty quantification via Bayesian inference. This approach, however, typically necessitates maintaining and running multiple models in an ensemble, which may exceed the computational limits of edge devices. This paper introduces a low-complexity methodology to address this challenge by distilling calibration information from a more complex model. In an offline phase, predictive probabilities generated by a high-complexity cloud-based model are leveraged to determine a threshold based on the typical divergence between the cloud and edge models. At run time, this threshold is used to construct credal sets -- ranges of predictive probabilities that are guaranteed, with a user-selected confidence level, to include the predictions of the cloud model. The credal sets are obtained through thresholding of a divergence measure in the simplex of predictive probabilities. Experiments on visual and language tasks demonstrate that the proposed approach, termed Conformalized Distillation for Credal Inference (CD-CI), significantly improves calibration performance compared to low-complexity Bayesian methods, such as Laplace approximation, making it a practical and efficient solution for edge AI deployments.
Abstract:Bayesian optimization (BO) is a sequential approach for optimizing black-box objective functions using zeroth-order noisy observations. In BO, Gaussian processes (GPs) are employed as probabilistic surrogate models to estimate the objective function based on past observations, guiding the selection of future queries to maximize utility. However, the performance of BO heavily relies on the quality of these probabilistic estimates, which can deteriorate significantly under model misspecification. To address this issue, we introduce localized online conformal prediction-based Bayesian optimization (LOCBO), a BO algorithm that calibrates the GP model through localized online conformal prediction (CP). LOCBO corrects the GP likelihood based on predictive sets produced by LOCBO, and the corrected GP likelihood is then denoised to obtain a calibrated posterior distribution on the objective function. The likelihood calibration step leverages an input-dependent calibration threshold to tailor coverage guarantees to different regions of the input space. Under minimal noise assumptions, we provide theoretical performance guarantees for LOCBO's iterates that hold for the unobserved objective function. These theoretical findings are validated through experiments on synthetic and real-world optimization tasks, demonstrating that LOCBO consistently outperforms state-of-the-art BO algorithms in the presence of model misspecification.
Abstract:Over-the-air federated learning (FL), i.e., AirFL, leverages computing primitively over multiple access channels. A long-standing challenge in AirFL is to achieve coherent signal alignment without relying on expensive channel estimation and feedback. This paper proposes NCAirFL, a CSI-free AirFL scheme based on unbiased non-coherent detection at the edge server. By exploiting binary dithering and a long-term memory based error-compensation mechanism, NCAirFL achieves a convergence rate of order $\mathcal{O}(1/\sqrt{T})$ in terms of the average square norm of the gradient for general non-convex and smooth objectives, where $T$ is the number of communication rounds. Experiments demonstrate the competitive performance of NCAirFL compared to vanilla FL with ideal communications and to coherent transmission-based benchmarks.
Abstract:Inspired by biological processes, neuromorphic computing utilizes spiking neural networks (SNNs) to perform inference tasks, offering significant efficiency gains for workloads involving sequential data. Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy. In a split computing architecture, where the SNN is divided across two separate devices, the device storing the first layers must share information about the spikes generated by the local output neurons with the other device. Consequently, the advantages of multi-level spikes must be balanced against the challenges of transmitting additional bits between the two devices. This paper addresses these challenges by investigating a wireless neuromorphic split computing architecture employing multi-level SNNs. For this system, we present the design of digital and analog modulation schemes optimized for an orthogonal frequency division multiplexing (OFDM) radio interface. Simulation and experimental results using software-defined radios provide insights into the performance gains of multi-level SNN models and the optimal payload size as a function of the quality of the connection between a transmitter and receiver.
Abstract:This work investigates a collaborative sensing and data collection system in which multiple unmanned aerial vehicles (UAVs) sense an area of interest and transmit images to a cloud server (CS) for processing. To accelerate the completion of sensing missions, including data transmission, the sensing task is divided into individual private sensing tasks for each UAV and a common sensing task that is executed by all UAVs to enable cooperative transmission. Unlike existing studies, we explore the use of an advanced cell-free multiple-input multiple-output (MIMO) network, which effectively manages inter-UAV interference. To further optimize wireless channel utilization, we propose a hybrid transmission strategy that combines time-division multiple access (TDMA), non-orthogonal multiple access (NOMA), and cooperative transmission. The problem of jointly optimizing task splitting ratios and the hybrid TDMA-NOMA-cooperative transmission strategy is formulated with the objective of minimizing mission completion time. Extensive numerical results demonstrate the effectiveness of the proposed task allocation and hybrid transmission scheme in accelerating the completion of sensing missions.
Abstract:Sequence models have demonstrated the ability to perform tasks like channel equalization and symbol detection by automatically adapting to current channel conditions. This is done without requiring any explicit optimization and by leveraging not only short pilot sequences but also contextual information such as long-term channel statistics. The operating principle underlying automatic adaptation is in-context learning (ICL), an emerging property of sequence models. Prior art adopted transformer-based sequence models, which, however, have a computational complexity scaling quadratically with the context length due to batch processing. Recently, state-space models (SSMs) have emerged as a more efficient alternative, affording a linear inference complexity in the context size. This work explores the potential of SSMs for ICL-based equalization in cell-free massive MIMO systems. Results show that selective SSMs achieve comparable performance to transformer-based models while requiring approximately eight times fewer parameters and five times fewer floating-point operations.
Abstract:To support real-world decision-making, it is crucial for models to be well-calibrated, i.e., to assign reliable confidence estimates to their predictions. Uncertainty quantification is particularly important in personalized federated learning (PFL), as participating clients typically have small local datasets, making it difficult to unambiguously determine optimal model parameters. Bayesian PFL (BPFL) methods can potentially enhance calibration, but they often come with considerable computational and memory requirements due to the need to track the variances of all the individual model parameters. Furthermore, different clients may exhibit heterogeneous uncertainty levels owing to varying local dataset sizes and distributions. To address these challenges, we propose LR-BPFL, a novel BPFL method that learns a global deterministic model along with personalized low-rank Bayesian corrections. To tailor the local model to each client's inherent uncertainty level, LR-BPFL incorporates an adaptive rank selection mechanism. We evaluate LR-BPFL across a variety of datasets, demonstrating its advantages in terms of calibration, accuracy, as well as computational and memory requirements.
Abstract:We introduce adaptive learn-then-test (aLTT), an efficient hyperparameter selection procedure that provides finite-sample statistical guarantees on the population risk of AI models. Unlike the existing learn-then-test (LTT) technique, which relies on conventional p-value-based multiple hypothesis testing (MHT), aLTT implements sequential data-dependent MHT with early termination by leveraging e-processes. As a result, aLTT can reduce the number of testing rounds, making it particularly well-suited for scenarios in which testing is costly or presents safety risks. Apart from maintaining statistical validity, in applications such as online policy selection for offline reinforcement learning and hyperparameter tuning for engineering systems, aLTT is shown to achieve the same performance as LTT while requiring only a fraction of the testing rounds.
Abstract:This paper presents communication-constrained distributed conformal risk control (CD-CRC) framework, a novel decision-making framework for sensor networks under communication constraints. Targeting multi-label classification problems, such as segmentation, CD-CRC dynamically adjusts local and global thresholds used to identify significant labels with the goal of ensuring a target false negative rate (FNR), while adhering to communication capacity limits. CD-CRC builds on online exponentiated gradient descent to estimate the relative quality of the observations of different sensors, and on online conformal risk control (CRC) as a mechanism to control local and global thresholds. CD-CRC is proved to offer deterministic worst-case performance guarantees in terms of FNR and communication overhead, while the regret performance in terms of false positive rate (FPR) is characterized as a function of the key hyperparameters. Simulation results highlight the effectiveness of CD-CRC, particularly in communication resource-constrained environments, making it a valuable tool for enhancing the performance and reliability of distributed sensor networks.
Abstract:The information bottleneck (IB) problem is a widely studied framework in machine learning for extracting compressed features that are informative for downstream tasks. However, current approaches to solving the IB problem rely on a heuristic tuning of hyperparameters, offering no guarantees that the learned features satisfy information-theoretic constraints. In this work, we introduce a statistically valid solution to this problem, referred to as IB via multiple hypothesis testing (IB-MHT), which ensures that the learned features meet the IB constraints with high probability, regardless of the size of the available dataset. The proposed methodology builds on Pareto testing and learn-then-test (LTT), and it wraps around existing IB solvers to provide statistical guarantees on the IB constraints. We demonstrate the performance of IB-MHT on classical and deterministic IB formulations, validating the effectiveness of IB-MHT in outperforming conventional methods in terms of statistical robustness and reliability.