Abstract:Inspired by biological processes, neuromorphic computing utilizes spiking neural networks (SNNs) to perform inference tasks, offering significant efficiency gains for workloads involving sequential data. Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy. In a split computing architecture, where the SNN is divided across two separate devices, the device storing the first layers must share information about the spikes generated by the local output neurons with the other device. Consequently, the advantages of multi-level spikes must be balanced against the challenges of transmitting additional bits between the two devices. This paper addresses these challenges by investigating a wireless neuromorphic split computing architecture employing multi-level SNNs. For this system, we present the design of digital and analog modulation schemes optimized for an orthogonal frequency division multiplexing (OFDM) radio interface. Simulation and experimental results using software-defined radios provide insights into the performance gains of multi-level SNN models and the optimal payload size as a function of the quality of the connection between a transmitter and receiver.
Abstract:Neuromorphic computing leverages the sparsity of temporal data to reduce processing energy by activating a small subset of neurons and synapses at each time step. When deployed for split computing in edge-based systems, remote neuromorphic processing units (NPUs) can reduce the communication power budget by communicating asynchronously using sparse impulse radio (IR) waveforms. This way, the input signal sparsity translates directly into energy savings both in terms of computation and communication. However, with IR transmission, the main contributor to the overall energy consumption remains the power required to maintain the main radio on. This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs. A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making. To address this problem, as a second contribution, this work proposes a novel methodology that leverages the use of a digital twin (DT), i.e., a simulator, of the physical system, coupled with a sequential statistical testing approach known as Learn Then Test (LTT) to provide theoretical reliability guarantees. The proposed DT-LTT methodology is broadly applicable to other design problems, and is showcased here for neuromorphic communications. Experimental results validate the design and the analysis, confirming the theoretical reliability guarantees and illustrating trade-offs among reliability, energy consumption, and informativeness of the decisions.
Abstract:Spiking neural networks (SNNs) are recurrent models that can leverage sparsity in input time series to efficiently carry out tasks such as classification. Additional efficiency gains can be obtained if decisions are taken as early as possible as a function of the complexity of the input time series. The decision on when to stop inference and produce a decision must rely on an estimate of the current accuracy of the decision. Prior work demonstrated the use of conformal prediction (CP) as a principled way to quantify uncertainty and support adaptive-latency decisions in SNNs. In this paper, we propose to enhance the uncertainty quantification capabilities of SNNs by implementing ensemble models for the purpose of improving the reliability of stopping decisions. Intuitively, an ensemble of multiple models can decide when to stop more reliably by selecting times at which most models agree that the current accuracy level is sufficient. The proposed method relies on different forms of information pooling from ensemble models, and offers theoretical reliability guarantees. We specifically show that variational inference-based ensembles with p-variable pooling significantly reduce the average latency of state-of-the-art methods, while maintaining reliability guarantees.
Abstract:Spiking neural networks (SNNs) process time-series data via internal event-driven neural dynamics whose energy consumption depends on the number of spikes exchanged between neurons over the course of the input presentation. In typical implementations of an SNN classifier, decisions are produced after the entire input sequence has been processed, resulting in latency and energy consumption levels that are fairly uniform across inputs. Recently introduced delay-adaptive SNNs tailor the inference latency -- and, with it, the energy consumption -- to the difficulty of each example, by producing an early decision when the SNN model is sufficiently ``confident''. In this paper, we start by observing that, as an SNN processes input samples, its classification decisions tend to be first under-confident and then over-confident with respect to the decision's ground-truth, unknown, test accuracy. This makes it difficult to determine a stopping time that ensures a desired level of accuracy. To address this problem, we introduce a novel delay-adaptive SNN-based inference methodology that, wrapping around any pre-trained SNN classifier, provides guaranteed reliability for the decisions produced at input-dependent stopping times. The approach entails minimal added complexity as compared to the underlying SNN, requiring only thresholding and counting operations at run time, and it leverages tools from conformal prediction (CP).
Abstract:Neuromorphic computing is an emerging technology that support event-driven data processing for applications requiring efficient online inference and/or control. Recent work has introduced the concept of neuromorphic communications, whereby neuromorphic computing is integrated with impulse radio (IR) transmission to implement low-energy and low-latency remote inference in wireless IoT networks. In this paper, we introduce neuromorphic integrated sensing and communications (N-ISAC), a novel solution that enables efficient online data decoding and radar sensing. N-ISAC leverages a common IR waveform for the dual purpose of conveying digital information and of detecting the presence or absence of a radar target. A spiking neural network (SNN) is deployed at the receiver to decode digital data and detect the radar target using directly the received signal. The SNN operation is optimized by balancing performance metric for data communications and radar sensing, highlighting synergies and trade-offs between the two applications.
Abstract:Neuromorphic computing is an emerging computing paradigm that moves away from batched processing towards the online, event-driven, processing of streaming data. Neuromorphic chips, when coupled with spike-based sensors, can inherently adapt to the "semantics" of the data distribution by consuming energy only when relevant events are recorded in the timing of spikes and by proving a low-latency response to changing conditions in the environment. This paper proposes an end-to-end design for a neuromorphic wireless Internet-of-Things system that integrates spike-based sensing, processing, and communication. In the proposed NeuroComm system, each sensing device is equipped with a neuromorphic sensor, a spiking neural network (SNN), and an impulse radio transmitter with multiple antennas. Transmission takes place over a shared fading channel to a receiver equipped with a multi-antenna impulse radio receiver and with an SNN. In order to enable adaptation of the receiver to the fading channel conditions, we introduce a hypernetwork to control the weights of the decoding SNN using pilots. Pilots, encoding SNNs, decoding SNN, and hypernetwork are jointly trained across multiple channel realizations. The proposed system is shown to significantly improve over conventional frame-based digital solutions, as well as over alternative non-adaptive training methods, in terms of time-to-accuracy and energy consumption metrics.
Abstract:With the growing demand for latency-critical and computation-intensive Internet of Things (IoT) services, mobile edge computing (MEC) has emerged as a promising technique to reinforce the computation capability of the resource-constrained mobile devices. To exploit the cloud-like functions at the network edge, service caching has been implemented to (partially) reuse the computation tasks, thus effectively reducing the delay incurred by data retransmissions and/or the computation burden due to repeated execution of the same task. In a multiuser cache-assisted MEC system, designs for service caching depend on users' preference for different types of services, which is at times highly correlated to the locations where the requests are made. In this paper, we exploit users' location-dependent service preference profiles to formulate a cache placement optimization problem in a multiuser MEC system. Specifically, we consider multiple representative locations, where users at the same location share the same preference profile for a given set of services. In a frequency-division multiple access (FDMA) setup, we jointly optimize the binary cache placement, edge computation resources and bandwidth allocation to minimize the expected weighted-sum energy of the edge server and the users with respect to the users' preference profile, subject to the bandwidth and the computation limitations, and the latency constraints. To effectively solve the mixed-integer non-convex problem, we propose a deep learning based offline cache placement scheme using a novel stochastic quantization based discrete-action generation method. In special cases, we also attain suboptimal caching decisions with low complexity leveraging the structure of the optimal solution. The simulations verify the performance of the proposed scheme and the effectiveness of service caching in general.