Shitz
Abstract:Pinching-antenna systems (PASSs) are a recent flexible-antenna technology that is realized by attaching simple components, referred to as pinching elements, to dielectric waveguides. This work explores the potential of deploying PASS for uplink and downlink transmission in multiuser MIMO settings. For downlink PASS-aided communication, we formulate the optimal hybrid beamforming, in which the digital precoding matrix at the access point and the location of pinching elements on the waveguides are jointly optimized to maximize the achievable weighted sum-rate. Invoking fractional programming and Gauss-Seidel approach, we propose two low-complexity algorithms to iteratively update the precoding matrix and activated locations of the pinching elements. We further study uplink transmission aided by a PASS, where an iterative scheme is designed to address the underlying hybrid multiuser detection problem. We validate the proposed schemes through extensive numerical experiments. The results demonstrate that using a PASS, the throughput in both uplink and downlink is boosted significantly as compared with baseline MIMO architectures, such as massive MIMO~and classical hybrid analog-digital designs. This highlights the great potential of PASSs, making it a promising reconfigurable antenna technology for next-generation wireless systems.
Abstract:A flexible intelligent metasurface (FIM) is composed of an array of low-cost radiating elements, each of which can independently radiate electromagnetic signals and flexibly adjust its position through a 3D surface-morphing process. In our system, an FIM is deployed at a base station (BS) that transmits to multiple single-antenna users. We formulate an optimization problem for minimizing the total downlink transmit power at the BS by jointly optimizing the transmit beamforming and the FIM's surface shape, subject to an individual signal-to-interference-plus-noise ratio (SINR) constraint for each user as well as to a constraint on the maximum morphing range of the FIM. To address this problem, an efficient alternating optimization method is proposed to iteratively update the FIM's surface shape and the transmit beamformer to gradually reduce the transmit power. Finally, our simulation results show that at a given data rate the FIM reduces the transmit power by about $3$ dB compared to conventional rigid 2D arrays.
Abstract:Pinching antennas have been recently proposed as a promising flexible-antenna technology, which can be implemented by attaching low-cost pinching elements to dielectric waveguides. This work explores the potential of employing pinching antenna systems (PASs) for downlink transmission in a multiuser MIMO setting. We consider the problem of hybrid beamforming, where the digital precoder at the access point and the activated locations of the pinching elements are jointly optimized to maximize the achievable weighted sum-rate. Invoking fractional programming, a novel low-complexity algorithm is developed to iteratively update the precoding matrix and the locations of the pinching antennas. We validate the proposed scheme through extensive numerical experiments. Our investigations demonstrate that using PAS the system throughput can be significantly boosted as compared with the conventional fixed-location antenna systems, enlightening the potential of PAS as an enabling candidate for next-generation wireless networks.
Abstract:Reconfigurable intelligent surfaces (RISs) have been recognized as a revolutionary technology for future wireless networks. However, RIS-assisted communications have to continuously tune phase-shifts relying on accurate channel state information (CSI) that is generally difficult to obtain due to the large number of RIS channels. The joint design of CSI acquisition and subsection RIS phase-shifts remains a significant challenge in dynamic environments. In this paper, we propose a diffusion-enhanced decision Transformer (DEDT) framework consisting of a diffusion model (DM) designed for efficient CSI acquisition and a decision Transformer (DT) utilized for phase-shift optimizations. Specifically, we first propose a novel DM mechanism, i.e., conditional imputation based on denoising diffusion probabilistic model, for rapidly acquiring real-time full CSI by exploiting the spatial correlations inherent in wireless channels. Then, we optimize beamforming schemes based on the DT architecture, which pre-trains on historical environments to establish a robust policy model. Next, we incorporate a fine-tuning mechanism to ensure rapid beamforming adaptation to new environments, eliminating the retraining process that is imperative in conventional reinforcement learning (RL) methods. Simulation results demonstrate that DEDT can enhance efficiency and adaptability of RIS-aided communications with fluctuating channel conditions compared to state-of-the-art RL methods.
Abstract:In federated learning (FL), heterogeneity among the local dataset distributions of clients can result in unsatisfactory performance for some, leading to an unfair model. To address this challenge, we propose an over-the-air fair federated learning algorithm (OTA-FFL), which leverages over-the-air computation to train fair FL models. By formulating FL as a multi-objective minimization problem, we introduce a modified Chebyshev approach to compute adaptive weighting coefficients for gradient aggregation in each communication round. To enable efficient aggregation over the multiple access channel, we derive analytical solutions for the optimal transmit scalars at the clients and the de-noising scalar at the parameter server. Extensive experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance compared to existing methods.
Abstract:Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.
Abstract:Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.
Abstract:To alleviate the training burden in federated learning while enhancing convergence speed, Split Federated Learning (SFL) has emerged as a promising approach by combining the advantages of federated and split learning. However, recent studies have largely overlooked competitive situations. In this framework, the SFL model owner can choose the cut layer to balance the training load between the server and clients, ensuring the necessary level of privacy for the clients. Additionally, the SFL model owner sets incentives to encourage client participation in the SFL process. The optimization strategies employed by the SFL model owner influence clients' decisions regarding the amount of data they contribute, taking into account the shared incentives over clients and anticipated energy consumption during SFL. To address this framework, we model the problem using a hierarchical decision-making approach, formulated as a single-leader multi-follower Stackelberg game. We demonstrate the existence and uniqueness of the Nash equilibrium among clients and analyze the Stackelberg equilibrium by examining the leader's game. Furthermore, we discuss privacy concerns related to differential privacy and the criteria for selecting the minimum required cut layer. Our findings show that the Stackelberg equilibrium solution maximizes the utility for both the clients and the SFL model owner.
Abstract:Second-order methods are widely adopted to improve the convergence rate of learning algorithms. In federated learning (FL), these methods require the clients to share their local Hessian matrices with the parameter server (PS), which comes at a prohibitive communication cost. A classical solution to this issue is to approximate the global Hessian matrix from the first-order information. Unlike in idealized networks, this solution does not perform effectively in over-the-air FL settings, where the PS receives noisy versions of the local gradients. This paper introduces a novel second-order FL framework tailored for wireless channels. The pivotal innovation lies in the PS's capability to directly estimate the global Hessian matrix from the received noisy local gradients via a non-parametric method: the PS models the unknown Hessian matrix as a Gaussian process, and then uses the temporal relation between the gradients and Hessian along with the channel model to find a stochastic estimator for the global Hessian matrix. We refer to this method as Gaussian process-based Hessian modeling for wireless FL (GP-FL) and show that it exhibits a linear-quadratic convergence rate. Numerical experiments on various datasets demonstrate that GP-FL outperforms all classical baseline first and second order FL approaches.
Abstract:Flexible-antenna systems have recently received significant research interest due to their capability to reconfigure wireless channels intelligently. This paper focuses on a new type of flexible-antenna technology, termed pinching antennas, which can be realized by applying small dielectric particles on a waveguide. Analytical results are first developed for the simple case with a single pinching antenna and a single waveguide, where the unique feature of the pinching-antenna system to create strong line-of-sight links and mitigate large-scale path loss is demonstrated. An advantageous feature of pinching-antenna systems is that multiple pinching antennas can be activated on a single waveguide at no extra cost; however, they must be fed with the same signal. This feature motivates the application of non-orthogonal multiple access (NOMA), and analytical results are provided to demonstrate the superior performance of NOMA-assisted pinching-antenna systems. Finally, the case with multiple pinching antennas and multiple waveguides is studied, which resembles a classical multiple-input single-input (MISO) interference channel. By exploiting the capability of pinching antennas to reconfigure the wireless channel, it is revealed that a performance upper bound on the interference channel becomes achievable, where the achievability conditions are also identified. Computer simulation results are presented to verify the developed analytical results and demonstrate the superior performance of pinching-antenna systems.