Abstract:Pinching-antenna systems (PASS) have been recently proposed to improve the performance of wireless networks by reconfiguring both the large-scale and small-scale channel conditions. However, existing studies ignore the physical constraints of antenna placement and assume fixed antenna radiation power. To fill this research gap, this paper investigates the design of PASS taking into account the motion power consumption of pinching-antennas (PAs) and the impact of adjustable antenna radiation power. To that end, we minimize the average power consumption for a given quality-of-service (QoS) requirement, by jointly optimizing the antenna positions, antenna radiation power ratios, and transmit beamforming. To the best of the authors' knowledge, this is the first work to consider radiation power optimization in PASS, which provides an additional degree of freedom (DoF) for system design. The cases with both continuous and discrete antenna placement are considered, where the main challenge lies in the fact that the antenna positions affect both the magnitude and phase of the channel coefficients of PASS, making system optimization very challenging. To tackle the resulting unique obstacles, an alternating direction method of multipliers (ADMM)-based framework is proposed to solve the problem for continuous antenna movement, while its discrete counterpart is formulated as a mixed integer nonlinear programming (MINLP) problem and solved by the block coordinate descent (BCD) method. Simulation results validate the performance enhancement achieved by incorporating PA movement power assumption and adjustable radiation power into PASS design, while also demonstrating the efficiency of the proposed optimization framework. The benefits of PASS over conventional multiple-input multiple-output (MIMO) systems in mitigating the large-scale path loss and inter-user interference is also revealed.
Abstract:Recent developments in the Internet of Bio-Nano Things (IoBNT) are laying the groundwork for innovative applications across the healthcare sector. Nanodevices designed to operate within the body, managed remotely via the internet, are envisioned to promptly detect and actuate on potential diseases. In this vision, an inherent challenge arises due to the limited capabilities of individual nanosensors; specifically, nanosensors must communicate with one another to collaborate as a cluster. Aiming to research the boundaries of the clustering capabilities, this survey emphasizes data-driven communication strategies in molecular communication (MC) channels as a means of linking nanosensors. Relying on the flexibility and robustness of machine learning (ML) methods to tackle the dynamic nature of MC channels, the MC research community frequently refers to neural network (NN) architectures. This interdisciplinary research field encompasses various aspects, including the use of NNs to facilitate communication in MC environments, their implementation at the nanoscale, explainable approaches for NNs, and dataset generation for training. Within this survey, we provide a comprehensive analysis of fundamental perspectives on recent trends in NN architectures for MC, the feasibility of their implementation at the nanoscale, applied explainable artificial intelligence (XAI) techniques, and the accessibility of datasets along with best practices for their generation. Additionally, we offer open-source code repositories that illustrate NN-based methods to support reproducible research for key MC scenarios. Finally, we identify emerging research challenges, such as robust NN architectures, biologically integrated NN modules, and scalable training strategies.
Abstract:In agriculture, molecular communication (MC) is envisioned as a framework to address critical challenges such as smart pest control. While conventional approaches mostly rely on synthetic plant protection products, posing high risks for the environment, harnessing plant signaling processes can lead to innovative approaches for nature-inspired sustainable pest control. In this paper, we investigate an approach for sustainable pest control and reveal how the MC paradigm can be employed for analysis and optimization. In particular, we consider a system where herbivore-induced plant volatiles (HIPVs), specifically methyl salicylate (MeSA), is encapsulated into microspheres deployed on deployed on plant leaves. The controlled release of MeSA from the microspheres, acting as transmitters (TXs), supports pest deterrence and antagonist attraction, providing an eco-friendly alternative to synthetic plant protection products. Based on experimental data, we investigate the MeSA release kinetics and obtain an analytical model. To describe the propagation of MeSA in farming environments, we employ a three dimensional (3D) advection-diffusion model, incorporating realistic wind fields which are predominantly affecting particle propagation, and solve it by a finite difference method (FDM). The proposed model is used to investigate the MeSA distribution for different TX arrangements, representing different practical microsphere deployment strategies. Moreover, we introduce the coverage effectiveness index (CEI) as a novel metric to quantify the environmental coverage of MeSA. This analysis offers valuable guidance for the practical development of microspheres and their deployment aimed at enhancing coverage and, consequently, the attraction of antagonistic insects.
Abstract:Energy-efficient designs are proposed for multi-user (MU) multiple-input multiple-output (MIMO) broadcast channels (BC), assisted by simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surfaces (RIS) operating at finite block length (FBL). In particular, we maximize the sum energy efficiency (EE), showing that STAR-RIS can substantially enhance it. Our findings demonstrate that the gains of employing STAR-RIS increase when the codeword length and the maximum tolerable bit error rate decrease, meaning that a STAR-RIS is more energy efficient in a system with more stringent latency and reliability requirements.
Abstract:Pinching antennas have emerged as a promising technology for reconfiguring wireless propagation environments, particularly in high-frequency communication systems operating in the millimeter-wave and terahertz bands. By enabling dynamic activation at arbitrary positions along a dielectric waveguide, pinching antennas offer unprecedented channel reconfigurability and the ability to provide line-of-sight (LoS) links in scenarios with severe LoS blockages. The performance of pinching-antenna systems is highly dependent on the optimized placement of the pinching antennas, which must be jointly considered with traditional resource allocation (RA) variables -- including transmission power, time slots, and subcarriers. The resulting joint RA problems are typically non-convex with complex variable coupling, necessitating sophisticated optimization techniques. This article provides a comprehensive survey of existing RA algorithms designed for pinching-antenna systems, supported by numerical case studies that demonstrate their potential performance gains. Key challenges and open research problems are also identified to guide future developments in this emerging field.
Abstract:Integrated sensing and communication (ISAC) has been envisioned to play a more important role in future wireless networks. However, the design of ISAC networks is challenging, especially when there are multiple communication and sensing (C\&S) nodes and multiple sensing targets. We investigate a multi-base station (BS) ISAC network in which multiple BSs equipped with multiple antennas simultaneously provide C\&S services for multiple ground communication users (CUs) and targets. To enhance the overall performance of C\&S, we formulate a joint user association (UA) and multi-BS transmit beamforming optimization problem with the objective of maximizing the total sum rate of all CUs while ensuring both the minimum target detection and parameter estimation requirements. To efficiently solve the highly non-convex mixed integer nonlinear programming (MINLP) optimization problem, we propose an alternating optimization (AO)-based algorithm that decomposes the problem into two sub-problems, i.e., UA optimization and multi-BS transmit beamforming optimization. Inspired by large language models (LLMs) for prediction and inference, we propose a unified framework integrating LLMs with convex-based optimization methods. First, we propose a comprehensive design of prompt engineering, including few-shot, chain of thought, and self-reflection techniques to guide LLMs in solving the binary integer programming UA optimization problem. Second, we utilize convex-based optimization methods to handle the non-convex beamforming optimization problem based on fractional programming (FP), majorization minimization (MM), and the alternating direction method of multipliers (ADMM) with an optimized UA from LLMs. Numerical results demonstrate that our proposed LLM-enabled AO-based algorithm achieves fast convergence and near upper-bound performance with the GPT-o1 model, outperforming various benchmark schemes.
Abstract:Six-dimensional movable antenna (6DMA) is an innovative and transformative technology to improve wireless network capacity by adjusting the 3D positions and 3D rotations of antennas/surfaces (sub-arrays) based on the channel spatial distribution. For optimization of the antenna positions and rotations, the acquisition of statistical channel state information (CSI) is essential for 6DMA systems. In this paper, we unveil for the first time a new \textbf{\textit{directional sparsity}} property of the 6DMA channels between the base station (BS) and the distributed users, where each user has significant channel gains only with a (small) subset of 6DMA position-rotation pairs, which can receive direct/reflected signals from the user. By exploiting this property, a covariance-based algorithm is proposed for estimating the statistical CSI in terms of the average channel power at a small number of 6DMA positions and rotations. Based on such limited channel power estimation, the average channel powers for all possible 6DMA positions and rotations in the BS movement region are reconstructed by further estimating the multi-path average power and direction-of-arrival (DOA) vectors of all users. Simulation results show that the proposed directional sparsity-based algorithm can achieve higher channel power estimation accuracy than existing benchmark schemes, while requiring a lower pilot overhead.
Abstract:This letter introduces a novel wireless powered communication system, referred to as a wireless powered pinching-antenna network (WPPAN), utilizing a single waveguide with pinching antennas to address the double near-far problem inherent in wireless powered networks. In the proposed WPPAN, users harvest energy from spatially distributed pinching antennas in the downlink and use the collected power to transmit messages in the uplink. Furthermore, to manage the combinatorial complexity associated with activating the pinching antennas, we propose three approaches of varying complexity to simplify the original resource allocation problem and then solve it efficiently using convex optimization methods. Simulation results confirm that the proposed WPPAN system effectively mitigates the double near-far problem by providing antenna resources closer to the users, thereby enhancing both downlink energy harvesting and uplink data transmission.
Abstract:Token communications (TokCom) is an emerging generative semantic communication concept that reduces transmission rates by using context and multimodal large language model (MLLM)-based token processing, with tokens serving as universal semantic units across modalities. In this paper, we propose a semantic multiple access scheme in the token domain, referred to as token domain multiple access (ToDMA), where a large number of devices share a token codebook and a modulation codebook for source and channel coding, respectively. Specifically, each transmitter first tokenizes its source signal and modulate each token to a codeword. At the receiver, compressed sensing is employed first to detect active tokens and the corresponding channel state information (CSI) from the superposed signals. Then, the source token sequences are reconstructed by clustering the token-associated CSI across multiple time slots. In case of token collisions, some active tokens cannot be assigned and some positions in the reconstructed token sequences are empty. We propose to use pre-trained MLLMs to leverage the context, predict masked tokens, and thus mitigate token collisions. Simulation results demonstrate the effectiveness of the proposed ToDMA framework for both text and image transmission tasks, achieving significantly lower latency compared to context-unaware orthogonal communication schemes, while also delivering superior distortion and perceptual quality compared to state-of-the-art context-unaware non-orthogonal communication methods.
Abstract:Large language models (LLMs) hosted on cloud servers alleviate the computational and storage burdens on local devices but raise privacy concerns due to sensitive data transmission and require substantial communication bandwidth, which is challenging in constrained environments. In contrast, small language models (SLMs) running locally enhance privacy but suffer from limited performance on complex tasks. To balance computational cost, performance, and privacy protection under bandwidth constraints, we propose a privacy-aware wireless collaborative mixture of experts (PWC-MoE) framework. Specifically, PWC-MoE employs a sparse privacy-aware gating network to dynamically route sensitive tokens to privacy experts located on local clients, while non-sensitive tokens are routed to non-privacy experts located at the remote base station. To achieve computational efficiency, the gating network ensures that each token is dynamically routed to and processed by only one expert. To enhance scalability and prevent overloading of specific experts, we introduce a group-wise load-balancing mechanism for the gating network that evenly distributes sensitive tokens among privacy experts and non-sensitive tokens among non-privacy experts. To adapt to bandwidth constraints while preserving model performance, we propose a bandwidth-adaptive and importance-aware token offloading scheme. This scheme incorporates an importance predictor to evaluate the importance scores of non-sensitive tokens, prioritizing the most important tokens for transmission to the base station based on their predicted importance and the available bandwidth. Experiments demonstrate that the PWC-MoE framework effectively preserves privacy and maintains high performance even in bandwidth-constrained environments, offering a practical solution for deploying LLMs in privacy-sensitive and bandwidth-limited scenarios.