Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:To tackle the complexities of spatial non-stationary (SnS) effects and spherical wave propagation in near-field channel estimation (CE) for extremely large-scale multiple-input multiple-output (XL-MIMO) systems, this paper introduces an innovative SnS near-field CE framework grounded in adaptive subarray partitioning. Conventional methods relying on equal subarray partitioning often lead to suboptimal divisions, undermining CE precision. To overcome this, we propose an adaptive subarray segmentation approach. First, we develop a spherical-wave channel model customized for line-of-sight (LoS) XL-MIMO systems to capture SnS traits. Next, we define and evaluate the adverse effects of over-segmentation and under-segmentation on CE efficacy. To counter these issues, we introduce a novel dynamic hybrid beamforming-assisted power-based subarray segmentation paradigm (DHBF-PSSP), which merges cost-effective power measurements with a DHBF structure, enabling joint subarray partitioning and decoupling. A robust partitioning algorithm, termed power-adaptive subarray segmentation (PASS), exploits statistical features of power profiles, while the DHBF utilizes subarray segmentation-based group time block code (SS-GTBC) to enable efficient subarray decoupling with limited radio frequency (RF) chain resources. Additionally, by utilizing angular-domain block sparsity and inter-subcarrier structured sparsity, we propose a subarray segmentation-based assorted block sparse Bayesian learning algorithm under the multiple measurement vectors framework (SS-ABSBL-MMV), employing discrete Fourier transform (DFT) codebooks to lower complexity. Extensive simulation results validate the exceptional performance of the proposed framework over its counterparts.
Abstract:The growing demand for efficient semantic communication systems capable of managing diverse tasks and adapting to fluctuating channel conditions has driven the development of robust, resource-efficient frameworks. This article introduces a novel channel-adaptive and multi-task-aware semantic communication framework based on a masked auto-encoder architecture. Our framework optimizes the transmission of meaningful information by incorporating a multi-task-aware scoring mechanism that identifies and prioritizes semantically significant data across multiple concurrent tasks. A channel-aware extractor is employed to dynamically select relevant information in response to real-time channel conditions. By jointly optimizing semantic relevance and transmission efficiency, the framework ensures minimal performance degradation under resource constraints. Experimental results demonstrate the superior performance of our framework compared to conventional methods in tasks such as image reconstruction and object detection. These results underscore the framework's adaptability to heterogeneous channel environments and its scalability for multi-task applications, positioning it as a promising solution for next-generation semantic communication networks.
Abstract:Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks, but its practical deployment is hindered by the high communication overhead caused by frequent and costly server-device synchronization. Notably, most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance resulting from the prevalent issue of device heterogeneity. This variance severely decelerates algorithm convergence, increasing communication overhead and making it more challenging to achieve a well-performed model. In this paper, we propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme to achieve heterogeneity-robustness in the presence of quantized transmission and heterogeneous local updates among active edge devices. Comprehensive theoretical analysis justifies that FedQVR is inherently resilient to device heterogeneity and has a comparable convergence rate even with a small number of quantization bits, yielding significant communication savings. Besides, considering non-ideal wireless channels, we propose FedQVR-E which enhances the convergence of FedQVR by performing joint allocation of bandwidth and quantization bits across devices under constrained transmission delays. Extensive experimental results are also presented to demonstrate the superior performance of the proposed algorithms over their counterparts in terms of both communication efficiency and application performance.
Abstract:In this work, we study an unmanned aerial vehicle (UAV)-enabled secure integrated sensing and communication (ISAC) system, where a UAV serves as an aerial base station (BS) to simultaneously perform communication with a user and detect a target on the ground, while a dual-functional eavesdropper attempts to intercept the signals for both sensing and communication. Facing the dual eavesdropping threats, we aim to enhance the average achievable secrecy rate for the communication user by jointly designing the UAV trajectory together with the transmit information and sensing beamforming, while satisfying the requirements on sensing performance and sensing security, as well as the UAV power and flight constraints. To address the non-convex nature of the optimization problem, we employ the alternating optimization (AO) strategy, jointly with the successive convex approximation (SCA) and semidefinite relaxation (SDR) methods. Numerical results validate the proposed approach, demonstrating its ability to achieve a high secrecy rate while meeting the required sensing and security constraints.
Abstract:Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate. However, the technical bottlenecks of traditional methods pose significant challenges to cross-layer optimization. In this paper, joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning to maximize the weighted sum rate. Specifically, we convert the underlying problem into a joint multi-task optimization problem and then propose a centralized multi-task self-supervised learning algorithm to solve the problem so as to avoid costly manual labeling. Therein, two novel and general loss functions, i.e., negative fraction linear loss and exponential linear loss whose advantages in robustness and target domain have been proved and discussed, are designed to enable self-supervised learning. Moreover, we further design a MEC-enabled distributed multi-task self-supervised learning (DMTSSL) algorithm, with low complexity and high scalability to address the challenge of dimensional disaster. Finally, we develop the distance-aware transfer learning algorithm based on the DMTSSL algorithm to handle the dynamic scenario with negligible computation cost. Simulation results under $3$rd generation partnership project 38.901 urban-macrocell scenario demonstrate the superiority of the proposed algorithms over the baseline algorithms.
Abstract:This paper studies a hybrid language model (HLM) architecture that integrates a small language model (SLM) operating on a mobile device with a large language model (LLM) hosted at the base station (BS) of a wireless network. The HLM token generation process follows the speculative inference principle: the SLM's vocabulary distribution is uploaded to the LLM, which either accepts or rejects it, with rejected tokens being resampled by the LLM. While this approach ensures alignment between the vocabulary distributions of the SLM and LLM, it suffers from low token throughput due to uplink transmission and the computation costs of running both language models. To address this, we propose a novel HLM structure coined Uncertainty-aware HLM (U-HLM), wherein the SLM locally measures its output uncertainty, and skips both uplink transmissions and LLM operations for tokens that are likely to be accepted. This opportunistic skipping is enabled by our empirical finding of a linear correlation between the SLM's uncertainty and the LLM's rejection probability. We analytically derive the uncertainty threshold and evaluate its expected risk of rejection. Simulations show that U-HLM reduces uplink transmissions and LLM computation by 45.93%, while achieving up to 97.54% of the LLM's inference accuracy and 2.54$\times$ faster token throughput than HLM without skipping.
Abstract:Orbital angular momentum (OAM) technology enhances the spectrum and energy efficiency of wireless communications by enabling multiplexing over different OAM modes. However, classical information theory, which relies on scalar models and far-field approximations, cannot fully capture the unique characteristics of OAM-based systems, such as their complex electromagnetic field distributions and near-field behaviors. To address these limitations, this paper analyzes OAM-based wireless communications from an electromagnetic information theory (EIT) perspective, integrating electromagnetic theory with classical information theory. EIT accounts for the physical properties of electromagnetic waves, offering advantages such as improved signal manipulation and better performance in real-world conditions. Given these benefits, EIT is more suitable for analyzing OAM-based wireless communication systems. Presenting a typical OAM model utilizing uniform circular arrays (UCAs), this paper derives the channel capacity based on the induced electric fields by using Green's function. Numerical and simulation results validate the channel capacity enhancement via exploration under EIT framework. Additionally, this paper evaluates the impact of various parameters on the channel capacity. These findings provide new insights for understanding and optimizing OAM-based wireless communications systems.
Abstract:From 5G onwards, Non-Terrestrial Networks (NTNs) have emerged as a key component of future network architectures. Leveraging Low Earth Orbit (LEO) satellite constellations, NTNs are capable of building a space Internet and present a paradigm shift in delivering mobile services to even the most remote regions on Earth. However, the extensive coverage and rapid movement of LEO satellites pose unique challenges for NTN networking, including user equipment (UE) access and inter-satellite delivery, which directly impact the quality of service (QoS) and data transmission continuity. This paper offers an in-depth review of advanced NTN management technologies in the context of 6G evolution, focusing on radio resource management, mobility management, and dynamic network slicing. Building on this foundation and considering the latest trends in NTN development, we then present some innovative perspectives to emerging challenges in satellite beamforming, handover mechanisms, and inter-satellite transmissions. Lastly, we identify open research issues and propose future directions aimed at advancing satellite Internet deployment and enhancing NTN performance.
Abstract:This paper investigates the semantic communication and cooperative tracking control for an UAV swarm comprising a leader UAV and a group of follower UAVs, all interconnected via unreliable wireless multiple-input-multiple-output (MIMO) channels. Initially, we develop a dynamic model for the UAV swarm that accounts for both the internal interactions among the cooperative follower UAVs and the imperfections inherent in the MIMO channels that interlink the leader and follower UAVs. Building on this model, we incorporate the power costs of the UAVs and formulate the communication and cooperative tracking control challenge as a drift-plus-penalty optimization problem. We then derive a closed-form optimal solution that maintains a decentralized semantic architecture, dynamically adjusting to the tracking error costs and local channel conditions within the swarm. Employing Lyapunov drift analysis, we establish closed-form sufficient conditions for the stabilization of the UAV swarm's tracking performance. Numerical results demonstrate the significant enhancements in our proposed scheme over various state-of-the-art methods.