Abstract:This paper is concerned with unmanned aerial vehicle (UAV) video coding and transmission in scenarios such as emergency rescue and environmental monitoring. Unlike existing methods of modeling video source coding and channel transmission separately, we investigate the joint source-channel optimization issue for video coding and transmission. Particularly, we design eight-dimensional delay-power-rate-distortion models in terms of source coding and channel transmission and characterize the correlation between video coding and transmission, with which a joint source-channel optimization problem is formulated. Its objective is to minimize end-to-end distortion and UAV power consumption by optimizing fine-grained parameters related to UAV video coding and transmission. This problem is confirmed to be a challenging sequential-decision and non-convex optimization problem. We therefore decompose it into a family of repeated optimization problems by Lyapunov optimization and design an approximate convex optimization scheme with provable performance guarantees to tackle these problems. Based on the theoretical transformation, we propose a Lyapunov repeated iteration (LyaRI) algorithm. Extensive experiments are conducted to comprehensively evaluate the performance of LyaRI. Experimental results indicate that compared to its counterparts, LyaRI is robust to initial settings of encoding parameters, and the variance of its achieved encoding bitrate is reduced by 47.74%.
Abstract:Federated learning, as a promising distributed learning paradigm, enables collaborative training of a global model across multiple network edge clients without the need for central data collecting. However, the heterogeneity of edge data distribution drags the model towards the local minima, which can be distant from the global optimum. Such heterogeneity often leads to slow convergence and substantial communication overhead. To address these issues, we propose a novel federated learning framework called FedCMD, a model decoupling tailored to the Cloud-edge supported federated learning that separates deep neural networks into a body for capturing shared representations in Cloud and a personalized head for migrating data heterogeneity. Our motivation is that, by the deep investigation of the performance of selecting different neural network layers as the personalized head, we found rigidly assigning the last layer as the personalized head in current studies is not always optimal. Instead, it is necessary to dynamically select the personalized layer that maximizes the training performance by taking the representation difference between neighbor layers into account. To find the optimal personalized layer, we utilize the low-dimensional representation of each layer to contrast feature distribution transfer and introduce a Wasserstein-based layer selection method, aimed at identifying the best-match layer for personalization. Additionally, a weighted global aggregation algorithm is proposed based on the selected personalized layer for the practical application of FedCMD. Extensive experiments on ten benchmarks demonstrate the efficiency and superior performance of our solution compared with nine state-of-the-art solutions. All code and results are available at https://github.com/elegy112138/FedCMD.
Abstract:This paper is concerned with the issue of improving video subscribers' quality of experience (QoE) by deploying a multi-unmanned aerial vehicle (UAV) network. Different from existing works, we characterize subscribers' QoE by video bitrates, latency, and frame freezing and propose to improve their QoE by energy-efficiently and dynamically optimizing the multi-UAV network in terms of serving UAV selection, UAV trajectory, and UAV transmit power. The dynamic multi-UAV network optimization problem is formulated as a challenging sequential-decision problem with the goal of maximizing subscribers' QoE while minimizing the total network power consumption, subject to some physical resource constraints. We propose a novel network optimization algorithm to solve this challenging problem, in which a Lyapunov technique is first explored to decompose the sequential-decision problem into several repeatedly optimized sub-problems to avoid the curse of dimensionality. To solve the sub-problems, iterative and approximate optimization mechanisms with provable performance guarantees are then developed. Finally, we design extensive simulations to verify the effectiveness of the proposed algorithm. Simulation results show that the proposed algorithm can effectively improve the QoE of subscribers and is 66.75\% more energy-efficient than benchmarks.
Abstract:This paper addresses the problem of cross-modal object tracking from RGB videos and event data. Rather than constructing a complex cross-modal fusion network, we explore the great potential of a pre-trained vision Transformer (ViT). Particularly, we delicately investigate plug-and-play training augmentations that encourage the ViT to bridge the vast distribution gap between the two modalities, enabling comprehensive cross-modal information interaction and thus enhancing its ability. Specifically, we propose a mask modeling strategy that randomly masks a specific modality of some tokens to enforce the interaction between tokens from different modalities interacting proactively. To mitigate network oscillations resulting from the masking strategy and further amplify its positive effect, we then theoretically propose an orthogonal high-rank loss to regularize the attention matrix. Extensive experiments demonstrate that our plug-and-play training augmentation techniques can significantly boost state-of-the-art one-stream and twostream trackers to a large extent in terms of both tracking precision and success rate. Our new perspective and findings will potentially bring insights to the field of leveraging powerful pre-trained ViTs to model cross-modal data. The code will be publicly available.
Abstract:Internet of unmanned aerial vehicle (I-UAV) networks promise to accomplish sensing and transmission tasks quickly, robustly, and cost-efficiently via effective cooperation among UAVs. To achieve the promising benefits, the crucial I-UAV networking issue should be tackled. This article argues that I-UAV networking can be classified into three categories, quality-of-service (QoS) driven networking, quality-of-experience (QoE) driven networking, and situation aware networking. Each category of networking poses emerging challenges which have severe effects on the safe and efficient accomplishment of I-UAV missions. This article elaborately analyzes these challenges and expounds on the corresponding intelligent approaches to tackle the I-UAV networking issue. Besides, considering the uplifting effect of extending the scalability of I-UAV networks through cooperating with high altitude platforms (HAPs), this article gives an overview of the integrated HAP and I-UAV networks and presents the corresponding networking challenges and intelligent approaches.
Abstract:In this paper, we propose a single-agent Monte Carlo based reinforced feature selection (MCRFS) method, as well as two efficiency improvement strategies, i.e., early stopping (ES) strategy and reward-level interactive (RI) strategy. Feature selection is one of the most important technologies in data prepossessing, aiming to find the optimal feature subset for a given downstream machine learning task. Enormous research has been done to improve its effectiveness and efficiency. Recently, the multi-agent reinforced feature selection (MARFS) has achieved great success in improving the performance of feature selection. However, MARFS suffers from the heavy burden of computational cost, which greatly limits its application in real-world scenarios. In this paper, we propose an efficient reinforcement feature selection method, which uses one agent to traverse the whole feature set, and decides to select or not select each feature one by one. Specifically, we first develop one behavior policy and use it to traverse the feature set and generate training data. And then, we evaluate the target policy based on the training data and improve the target policy by Bellman equation. Besides, we conduct the importance sampling in an incremental way, and propose an early stopping strategy to improve the training efficiency by the removal of skew data. In the early stopping strategy, the behavior policy stops traversing with a probability inversely proportional to the importance sampling weight. In addition, we propose a reward-level interactive strategy to improve the training efficiency via reward-level external advice. Finally, we design extensive experiments on real-world data to demonstrate the superiority of the proposed method.
Abstract:This paper investigates whether computer usage profiles comprised of process-, network-, mouse- and keystroke-related events are unique and temporally consistent in a naturalistic setting, discussing challenges and opportunities of using such profiles in applications of continuous authentication. We collected ecologically-valid computer usage profiles from 28 MS Windows 10 computer users over 8 weeks and submitted this data to comprehensive machine learning analysis involving a diverse set of online and offline classifiers. We found that (i) computer usage profiles have the potential to uniquely characterize computer users (with a maximum F-score of 99.94%); (ii) network-related events were the most useful features to properly recognize profiles (95.14% of the top features distinguishing users being network-related); (iii) user profiles were mostly inconsistent over the 8-week data collection period, with 92.86% of users exhibiting drifts in terms of time and usage habits; and (iv) online models are better suited to handle computer usage profiles compared to offline models (maximum F-score for each approach was 95.99% and 99.94%, respectively).
Abstract:Real data often appear in the form of multiple incomplete views, and incomplete multi-view clustering is an effective method to integrate these incomplete views. Previous methods only learn the consistent information between different views and ignore the unique information of each view, which limits their clustering performance and generalizations. To overcome this limitation, we propose a novel View Variation and View Heredity approach (V 3 H). Inspired by the variation and the heredity in genetics, V 3 H first decomposes each subspace into a variation matrix for the corresponding view and a heredity matrix for all the views to represent the unique information and the consistent information respectively. Then, by aligning different views based on their cluster indicator matrices, V3H integrates the unique information from different views to improve the clustering performance. Finally, with the help of the adjustable low-rank representation based on the heredity matrix, V3H recovers the underlying true data structure to reduce the influence of the large incompleteness. More importantly, V3H presents possibly the first work to introduce genetics to clustering algorithms for learning simultaneously the consistent information and the unique information from incomplete multi-view data. Extensive experimental results on fifteen benchmark datasets validate its superiority over other state-of-the-arts.
Abstract:Multi-view clustering has wide applications in many image processing scenarios. In these scenarios, original image data often contain missing instances and noises, which is ignored by most multi-view clustering methods. However, missing instances may make these methods difficult to use directly and noises will lead to unreliable clustering results. In this paper, we propose a novel Auto-weighted Noisy and Incomplete Multi-view Clustering framework (ANIMC) via a soft auto-weighted strategy and a doubly soft regular regression model. Firstly, by designing adaptive semi-regularized nonnegative matrix factorization (adaptive semi-RNMF), the soft auto-weighted strategy assigns a proper weight to each view and adds a soft boundary to balance the influence of noises and incompleteness. Secondly, by proposing{\theta}-norm, the doubly soft regularized regression model adjusts the sparsity of our model by choosing different{\theta}. Compared with existing methods, ANIMC has three unique advantages: 1) it is a soft algorithm to adjust our framework in different scenarios, thereby improving its generalization ability; 2) it automatically learns a proper weight for each view, thereby reducing the influence of noises; 3) it performs doubly soft regularized regression that aligns the same instances in different views, thereby decreasing the impact of missing instances. Extensive experimental results demonstrate its superior advantages over other state-of-the-art methods.
Abstract:Incomplete multi-view clustering is an important technique to deal with real-world incomplete multi-view data. Previous works assume that all views have the same incompleteness, i.e., balanced incompleteness. However, different views often have distinct incompleteness, i.e., unbalanced incompleteness, which results in strong views (low-incompleteness views) and weak views (high-incompleteness views). The unbalanced incompleteness prevents us from directly using the previous methods for clustering. In this paper, inspired by the effective biological evolution theory, we design the novel scheme of view evolution to cluster strong and weak views. Moreover, we propose an Unbalanced Incomplete Multi-view Clustering method (UIMC), which is the first effective method based on view evolution for unbalanced incomplete multi-view clustering. Compared with previous methods, UIMC has two unique advantages: 1) it proposes weighted multi-view subspace clustering to integrate these unbalanced incomplete views, which effectively solves the unbalanced incomplete multi-view problem; 2) it designs the low-rank and robust representation to recover the data, which diminishes the impact of the incompleteness and noises. Extensive experimental results demonstrate that UIMC improves the clustering performance by up to 40% on three evaluation metrics over other state-of-the-art methods.