Abstract:Feature space is an environment where data points are vectorized to represent the original dataset. Reconstructing a good feature space is essential to augment the AI power of data, improve model generalization, and increase the availability of downstream ML models. Existing literature, such as feature transformation and feature selection, is labor-intensive (e.g., heavy reliance on empirical experience) and mostly designed for tabular data. Moreover, these methods regard data samples as independent, which ignores the unique topological structure when applied to graph data, thus resulting in a suboptimal reconstruction feature space. Can we consider the topological information to automatically reconstruct feature space for graph data without heavy experiential knowledge? To fill this gap, we leverage topology-aware reinforcement learning to automate and optimize feature space reconstruction for graph data. Our approach combines the extraction of core subgraphs to capture essential structural information with a graph neural network (GNN) to encode topological features and reduce computing complexity. Then we introduce three reinforcement agents within a hierarchical structure to systematically generate meaningful features through an iterative process, effectively reconstructing the feature space. This framework provides a principled solution for attributed graph feature space reconstruction. The extensive experiments demonstrate the effectiveness and efficiency of including topological awareness.
Abstract:Urban traffic speed prediction aims to estimate the future traffic speed for improving urban transportation services. Enormous efforts have been made to exploit Graph Neural Networks (GNNs) for modeling spatial correlations and temporal dependencies of traffic speed evolving patterns, regularized by graph topology.While achieving promising results, current traffic speed prediction methods still suffer from ignoring topology-free patterns, which cannot be captured by GNNs. To tackle this challenge, we propose a generic model for enabling the current GNN-based methods to preserve topology-free patterns. Specifically, we first develop a Dual Cross-Scale Transformer (DCST) architecture, including a Spatial Transformer and a Temporal Transformer, to preserve the cross-scale topology-free patterns and associated dynamics, respectively. Then, to further integrate both topology-regularized/-free patterns, we propose a distillation-style learning framework, in which the existing GNN-based methods are considered as the teacher model, and the proposed DCST architecture is considered as the student model. The teacher model would inject the learned topology-regularized patterns into the student model for integrating topology-free patterns. The extensive experimental results demonstrated the effectiveness of our methods.
Abstract:Feature transformation is to derive a new feature set from original features to augment the AI power of data. In many science domains such as material performance screening, while feature transformation can model material formula interactions and compositions and discover performance drivers, supervised labels are collected from expensive and lengthy experiments. This issue motivates an Unsupervised Feature Transformation Learning (UFTL) problem. Prior literature, such as manual transformation, supervised feedback guided search, and PCA, either relies on domain knowledge or expensive supervised feedback, or suffers from large search space, or overlooks non-linear feature-feature interactions. UFTL imposes a major challenge on existing methods: how to design a new unsupervised paradigm that captures complex feature interactions and avoids large search space? To fill this gap, we connect graph, contrastive, and generative learning to develop a measurement-pretrain-finetune paradigm for UFTL. For unsupervised feature set utility measurement, we propose a feature value consistency preservation perspective and develop a mean discounted cumulative gain like unsupervised metric to evaluate feature set utility. For unsupervised feature set representation pretraining, we regard a feature set as a feature-feature interaction graph, and develop an unsupervised graph contrastive learning encoder to embed feature sets into vectors. For generative transformation finetuning, we regard a feature set as a feature cross sequence and feature transformation as sequential generation. We develop a deep generative feature transformation model that coordinates the pretrained feature set encoder and the gradient information extracted from a feature set utility evaluator to optimize a transformed feature generator.
Abstract:Feature transformation aims to reconstruct the feature space of raw features to enhance the performance of downstream models. However, the exponential growth in the combinations of features and operations poses a challenge, making it difficult for existing methods to efficiently explore a wide space. Additionally, their optimization is solely driven by the accuracy of downstream models in specific domains, neglecting the acquisition of general feature knowledge. To fill this research gap, we propose an evolutionary LLM framework for automated feature transformation. This framework consists of two parts: 1) constructing a multi-population database through an RL data collector while utilizing evolutionary algorithm strategies for database maintenance, and 2) utilizing the ability of Large Language Model (LLM) in sequence understanding, we employ few-shot prompts to guide LLM in generating superior samples based on feature transformation sequence distinction. Leveraging the multi-population database initially provides a wide search scope to discover excellent populations. Through culling and evolution, the high-quality populations are afforded greater opportunities, thereby furthering the pursuit of optimal individuals. Through the integration of LLMs with evolutionary algorithms, we achieve efficient exploration within a vast space, while harnessing feature knowledge to propel optimization, thus realizing a more adaptable search paradigm. Finally, we empirically demonstrate the effectiveness and generality of our proposed method.
Abstract:Data augmentation is a series of techniques that generate high-quality artificial data by manipulating existing data samples. By leveraging data augmentation techniques, AI models can achieve significantly improved applicability in tasks involving scarce or imbalanced datasets, thereby substantially enhancing AI models' generalization capabilities. Existing literature surveys only focus on a certain type of specific modality data, and categorize these methods from modality-specific and operation-centric perspectives, which lacks a consistent summary of data augmentation methods across multiple modalities and limits the comprehension of how existing data samples serve the data augmentation process. To bridge this gap, we propose a more enlightening taxonomy that encompasses data augmentation techniques for different common data modalities. Specifically, from a data-centric perspective, this survey proposes a modality-independent taxonomy by investigating how to take advantage of the intrinsic relationship between data samples, including single-wise, pair-wise, and population-wise sample data augmentation methods. Additionally, we categorize data augmentation methods across five data modalities through a unified inductive approach.
Abstract:Feature selection aims to identify the optimal feature subset for enhancing downstream models. Effective feature selection can remove redundant features, save computational resources, accelerate the model learning process, and improve the model overall performance. However, existing works are often time-intensive to identify the effective feature subset within high-dimensional feature spaces. Meanwhile, these methods mainly utilize a single downstream task performance as the selection criterion, leading to the selected subsets that are not only redundant but also lack generalizability. To bridge these gaps, we reformulate feature selection through a neuro-symbolic lens and introduce a novel generative framework aimed at identifying short and effective feature subsets. More specifically, we found that feature ID tokens of the selected subset can be formulated as symbols to reflect the intricate correlations among features. Thus, in this framework, we first create a data collector to automatically collect numerous feature selection samples consisting of feature ID tokens, model performance, and the measurement of feature subset redundancy. Building on the collected data, an encoder-decoder-evaluator learning paradigm is developed to preserve the intelligence of feature selection into a continuous embedding space for efficient search. Within the learned embedding space, we leverage a multi-gradient search algorithm to find more robust and generalized embeddings with the objective of improving model performance and reducing feature subset redundancy. These embeddings are then utilized to reconstruct the feature ID tokens for executing the final feature selection. Ultimately, comprehensive experiments and case studies are conducted to validate the effectiveness of the proposed framework.
Abstract:Feature selection aims to identify the most pattern-discriminative feature subset. In prior literature, filter (e.g., backward elimination) and embedded (e.g., Lasso) methods have hyperparameters (e.g., top-K, score thresholding) and tie to specific models, thus, hard to generalize; wrapper methods search a feature subset in a huge discrete space and is computationally costly. To transform the way of feature selection, we regard a selected feature subset as a selection decision token sequence and reformulate feature selection as a deep sequential generative learning task that distills feature knowledge and generates decision sequences. Our method includes three steps: (1) We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses. Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores. (2) We leverage the trained feature subset utility evaluator as a gradient provider to guide the identification of the optimal feature subset embedding;(3) We decode the optimal feature subset embedding to autoregressively generate the best feature selection decision sequence with autostop. Extensive experimental results show this generative perspective is effective and generic, without large discrete search space and expert-specific hyperparameters.
Abstract:Feature selection prepares the AI-readiness of data by eliminating redundant features. Prior research falls into two primary categories: i) Supervised Feature Selection, which identifies the optimal feature subset based on their relevance to the target variable; ii) Unsupervised Feature Selection, which reduces the feature space dimensionality by capturing the essential information within the feature set instead of using target variable. However, SFS approaches suffer from time-consuming processes and limited generalizability due to the dependence on the target variable and downstream ML tasks. UFS methods are constrained by the deducted feature space is latent and untraceable. To address these challenges, we introduce an innovative framework for feature selection, which is guided by knockoff features and optimized through reinforcement learning, to identify the optimal and effective feature subset. In detail, our method involves generating "knockoff" features that replicate the distribution and characteristics of the original features but are independent of the target variable. Each feature is then assigned a pseudo label based on its correlation with all the knockoff features, serving as a novel metric for feature evaluation. Our approach utilizes these pseudo labels to guide the feature selection process in 3 novel ways, optimized by a single reinforced agent: 1). A deep Q-network, pre-trained with the original features and their corresponding pseudo labels, is employed to improve the efficacy of the exploration process in feature selection. 2). We introduce unsupervised rewards to evaluate the feature subset quality based on the pseudo labels and the feature space reconstruction loss to reduce dependencies on the target variable. 3). A new {\epsilon}-greedy strategy is used, incorporating insights from the pseudo labels to make the feature selection process more effective.
Abstract:The extraordinary performance of large language models has not only reshaped the research landscape in the field of NLP but has also demonstrated its exceptional applicative potential in various domains. However, the potential of these models in mining relationships from graph data remains under-explored. Graph neural networks, as a popular research area in recent years, have numerous studies on relationship mining. Yet, current cutting-edge research in graph neural networks has not been effectively integrated with large language models, leading to limited efficiency and capability in graph relationship mining tasks. A primary challenge is the inability of LLMs to deeply exploit the edge information in graphs, which is critical for understanding complex node relationships. This gap limits the potential of LLMs to extract meaningful insights from graph structures, limiting their applicability in more complex graph-based analysis. We focus on how to utilize existing LLMs for mining and understanding relationships in graph data, applying these techniques to recommendation tasks. We propose an innovative framework that combines the strong contextual representation capabilities of LLMs with the relationship extraction and analysis functions of GNNs for mining relationships in graph data. Specifically, we design a new prompt construction framework that integrates relational information of graph data into natural language expressions, aiding LLMs in more intuitively grasping the connectivity information within graph data. Additionally, we introduce graph relationship understanding and analysis functions into LLMs to enhance their focus on connectivity information in graph data. Our evaluation on real-world datasets demonstrates the framework's ability to understand connectivity information in graph data.
Abstract:Due to non-stationarity of time series, the distribution shift problem largely hinders the performance of time series forecasting. Existing solutions either fail for the shifts beyond simple statistics or the limited compatibility with forecasting models. In this paper, we propose a general decoupled formulation for time series forecasting, with no reliance on fixed statistics and no restriction on forecasting architectures. Then, we make such a formulation formalized into a bi-level optimization problem, to enable the joint learning of the transformation (outer loop) and forecasting (inner loop). Moreover, the special requirements of expressiveness and bi-direction for the transformation motivate us to propose instance normalization flows (IN-Flow), a novel invertible network for time series transformation. Extensive experiments demonstrate our method consistently outperforms state-of-the-art baselines on both synthetic and real-world data.