Abstract:Existing Large Multimodal Models (LMMs) struggle with mathematical geometric reasoning due to a lack of high-quality image-text paired data. Current geometric data generation approaches, which apply preset templates to generate geometric data or use Large Language Models (LLMs) to rephrase questions and answers (Q&A), unavoidably limit data accuracy and diversity. To synthesize higher-quality data, we propose a two-stage Reverse Chain-of-Thought (R-CoT) geometry problem generation pipeline. First, we introduce GeoChain to produce high-fidelity geometric images and corresponding descriptions highlighting relations among geometric elements. We then design a Reverse A&Q method that reasons step-by-step based on the descriptions and generates questions in reverse from the reasoning results. Experiments demonstrate that the proposed method brings significant and consistent improvements on multiple LMM baselines, achieving new performance records in the 2B, 7B, and 8B settings. Notably, R-CoT-8B significantly outperforms previous state-of-the-art open-source mathematical models by 16.6% on MathVista and 9.2% on GeoQA, while also surpassing the closed-source model GPT-4o by an average of 13% across both datasets. The code is available at https://github.com/dle666/R-CoT.
Abstract:Multiple datasets have been created for training and testing appearance-based gaze estimators. Intuitively, more data should lead to better performance. However, combining datasets to train a single esti-mator rarely improves gaze estimation performance. One reason may be differences in the experimental protocols used to obtain the gaze sam-ples, resulting in differences in the distributions of head poses, gaze an-gles, illumination, etc. Another reason may be the inconsistency between methods used to define gaze angles (label mismatch). We propose two innovations to improve the performance of gaze estimation by leveraging multiple datasets, a change in the estimator architecture and the intro-duction of a gaze adaptation module. Most state-of-the-art estimators merge information extracted from images of the two eyes and the entire face either in parallel or combine information from the eyes first then with the face. Our proposed Two-stage Transformer-based Gaze-feature Fusion (TTGF) method uses transformers to merge information from each eye and the face separately and then merge across the two eyes. We argue that this improves head pose invariance since changes in head pose affect left and right eye images in different ways. Our proposed Gaze Adaptation Module (GAM) method handles annotation inconsis-tency by applying a Gaze Adaption Module for each dataset to correct gaze estimates from a single shared estimator. This enables us to combine information across datasets despite differences in labeling. Our experi-ments show that these innovations improve gaze estimation performance over the SOTA both individually and collectively (by 10% - 20%). Our code is available at https://github.com/HKUST-NISL/GazeSetMerge.
Abstract:Job marketplace is a heterogeneous graph composed of interactions among members (job-seekers), companies, and jobs. Understanding and modeling job marketplace can benefit both job seekers and employers, ultimately contributing to the greater good of the society. However, existing graph neural network (GNN)-based methods have shallow understandings of the associated textual features and heterogeneous relations. To address the above challenges, we propose PLM4Job, a job marketplace foundation model that tightly couples pretrained language models (PLM) with job market graph, aiming to fully utilize the pretrained knowledge and reasoning ability to model member/job textual features as well as various member-job relations simultaneously. In the pretraining phase, we propose a heterogeneous ego-graph-based prompting strategy to model and aggregate member/job textual features based on the topological structure around the target member/job node, where entity type embeddings and graph positional embeddings are introduced accordingly to model different entities and their heterogeneous relations. Meanwhile, a proximity-aware attention alignment strategy is designed to dynamically adjust the attention of the PLM on ego-graph node tokens in the prompt, such that the attention can be better aligned with job marketplace semantics. Extensive experiments at LinkedIn demonstrate the effectiveness of PLM4Job.
Abstract:The Retinex theory models the image as a product of illumination and reflection components, which has received extensive attention and is widely used in image enhancement, segmentation and color restoration. However, it has been rarely used in additive noise removal due to the inclusion of both multiplication and addition operations in the Retinex noisy image modeling. In this paper, we propose an exponential Retinex decomposition model based on hybrid non-convex regularization and weak space oscillation-modeling for image denoising. The proposed model utilizes non-convex first-order total variation (TV) and non-convex second-order TV to regularize the reflection component and the illumination component, respectively, and employs weak $H^{-1}$ norm to measure the residual component. By utilizing different regularizers, the proposed model effectively decomposes the image into reflection, illumination, and noise components. An alternating direction multipliers method (ADMM) combined with the Majorize-Minimization (MM) algorithm is developed to solve the proposed model. Furthermore, we provide a detailed proof of the convergence property of the algorithm. Numerical experiments validate both the proposed model and algorithm. Compared with several state-of-the-art denoising models, the proposed model exhibits superior performance in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM).
Abstract:The low-rank matrix completion (LRMC) technology has achieved remarkable results in low-level visual tasks. There is an underlying assumption that the real-world matrix data is low-rank in LRMC. However, the real matrix data does not satisfy the strict low-rank property, which undoubtedly present serious challenges for the above-mentioned matrix recovery methods. Fortunately, there are feasible schemes that devise appropriate and effective priori representations for describing the intrinsic information of real data. In this paper, we firstly model the matrix data ${\bf{Y}}$ as the sum of a low-rank approximation component $\bf{X}$ and an approximation error component $\cal{E}$. This finer-grained data decomposition architecture enables each component of information to be portrayed more precisely. Further, we design an overlapping group error representation (OGER) function to characterize the above error structure and propose a generalized low-rank matrix completion model based on OGER. Specifically, the low-rank component describes the global structure information of matrix data, while the OGER component not only compensates for the approximation error between the low-rank component and the real data but also better captures the local block sparsity information of matrix data. Finally, we develop an alternating direction method of multipliers (ADMM) that integrates the majorization-minimization (MM) algorithm, which enables the efficient solution of the proposed model. And we analyze the convergence of the algorithm in detail both theoretically and experimentally. In addition, the results of numerical experiments demonstrate that the proposed model outperforms existing competing models in performance.
Abstract:Text-rich images have significant and extensive value, deeply integrated into various aspects of human life. Notably, both visual cues and linguistic symbols in text-rich images play crucial roles in information transmission but are accompanied by diverse challenges. Therefore, the efficient and effective understanding of text-rich images is a crucial litmus test for the capability of Vision-Language Models. We have crafted an efficient vision-language model, StrucTexTv3, tailored to tackle various intelligent tasks for text-rich images. The significant design of StrucTexTv3 is presented in the following aspects: Firstly, we adopt a combination of an effective multi-scale reduced visual transformer and a multi-granularity token sampler (MG-Sampler) as a visual token generator, successfully solving the challenges of high-resolution input and complex representation learning for text-rich images. Secondly, we enhance the perception and comprehension abilities of StrucTexTv3 through instruction learning, seamlessly integrating various text-oriented tasks into a unified framework. Thirdly, we have curated a comprehensive collection of high-quality text-rich images, abbreviated as TIM-30M, encompassing diverse scenarios like incidental scenes, office documents, web pages, and screenshots, thereby improving the robustness of our model. Our method achieved SOTA results in text-rich image perception tasks, and significantly improved performance in comprehension tasks. Among multimodal models with LLM decoder of approximately 1.8B parameters, it stands out as a leader, which also makes the deployment of edge devices feasible. In summary, the StrucTexTv3 model, featuring efficient structural design, outstanding performance, and broad adaptability, offers robust support for diverse intelligent application tasks involving text-rich images, thus exhibiting immense potential for widespread application.
Abstract:On modern industrial assembly lines, many intelligent algorithms have been developed to replace or supervise workers. However, we found that there were bottlenecks in both training datasets and real-time performance when deploying algorithms on actual assembly line. Therefore, we developed a promising strategy for expanding industrial datasets, which utilized large models with strong generalization abilities to achieve efficient, high-quality, and large-scale dataset expansion, solving the problem of insufficient and low-quality industrial datasets. We also applied this strategy to video action recognition. We proposed a method of converting hand action recognition problems into hand skeletal trajectory classification problems, which solved the real-time performance problem of industrial algorithms. In the "hand movements during wire insertion" scenarios on the actual assembly line, the accuracy of hand action recognition reached 98.8\%. We conducted detailed experimental analysis to demonstrate the effectiveness and superiority of the method, and deployed the entire process on Midea's actual assembly line.
Abstract:We present LinkSAGE, an innovative framework that integrates Graph Neural Networks (GNNs) into large-scale personalized job matching systems, designed to address the complex dynamics of LinkedIns extensive professional network. Our approach capitalizes on a novel job marketplace graph, the largest and most intricate of its kind in industry, with billions of nodes and edges. This graph is not merely extensive but also richly detailed, encompassing member and job nodes along with key attributes, thus creating an expansive and interwoven network. A key innovation in LinkSAGE is its training and serving methodology, which effectively combines inductive graph learning on a heterogeneous, evolving graph with an encoder-decoder GNN model. This methodology decouples the training of the GNN model from that of existing Deep Neural Nets (DNN) models, eliminating the need for frequent GNN retraining while maintaining up-to-date graph signals in near realtime, allowing for the effective integration of GNN insights through transfer learning. The subsequent nearline inference system serves the GNN encoder within a real-world setting, significantly reducing online latency and obviating the need for costly real-time GNN infrastructure. Validated across multiple online A/B tests in diverse product scenarios, LinkSAGE demonstrates marked improvements in member engagement, relevance matching, and member retention, confirming its generalizability and practical impact.
Abstract:The extraordinary performance of large language models has not only reshaped the research landscape in the field of NLP but has also demonstrated its exceptional applicative potential in various domains. However, the potential of these models in mining relationships from graph data remains under-explored. Graph neural networks, as a popular research area in recent years, have numerous studies on relationship mining. Yet, current cutting-edge research in graph neural networks has not been effectively integrated with large language models, leading to limited efficiency and capability in graph relationship mining tasks. A primary challenge is the inability of LLMs to deeply exploit the edge information in graphs, which is critical for understanding complex node relationships. This gap limits the potential of LLMs to extract meaningful insights from graph structures, limiting their applicability in more complex graph-based analysis. We focus on how to utilize existing LLMs for mining and understanding relationships in graph data, applying these techniques to recommendation tasks. We propose an innovative framework that combines the strong contextual representation capabilities of LLMs with the relationship extraction and analysis functions of GNNs for mining relationships in graph data. Specifically, we design a new prompt construction framework that integrates relational information of graph data into natural language expressions, aiding LLMs in more intuitively grasping the connectivity information within graph data. Additionally, we introduce graph relationship understanding and analysis functions into LLMs to enhance their focus on connectivity information in graph data. Our evaluation on real-world datasets demonstrates the framework's ability to understand connectivity information in graph data.
Abstract:Dual-functional radar-communication (DFRC) has attracted considerable attention. This paper considers the frequency-selective multipath fading environment and proposes DFRC waveform design strategies based on multiple-input and multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) techniques. In the proposed waveform design strategies, the Cramer-Rao bound (CRB) of the radar system, the inter-stream interference (ISI) and the achievable rate of the communication system, are respectively considered as the performance metrics. In this paper, we focus on the performance trade-off between the radar system and the communication system, and the optimization problems are formulated. In the ISI minimization based waveform design strategy, the optimization problem is convex and can be easily solved. In the achievable rate maximization based waveform design strategy, we propose a water-filling (WF) and sequential quadratic programming (SQP) based algorithm to derive the covariance matrix and the precoding matrix. Simulation results validate the proposed DFRC waveform designs and show that the achievable rate maximization based strategy has a better performance than the ISI minimization based strategy.