Abstract:Graph Neural Networks (GNNs) have been widely deployed in various real-world applications. However, most GNNs are black-box models that lack explanations. One strategy to explain GNNs is through counterfactual explanation, which aims to find minimum perturbations on input graphs that change the GNN predictions. Existing works on GNN counterfactual explanations primarily concentrate on the local-level perspective (i.e., generating counterfactuals for each individual graph), which suffers from information overload and lacks insights into the broader cross-graph relationships. To address such issues, we propose GlobalGCE, a novel global-level graph counterfactual explanation method. GlobalGCE aims to identify a collection of subgraph mapping rules as counterfactual explanations for the target GNN. According to these rules, substituting certain significant subgraphs with their counterfactual subgraphs will change the GNN prediction to the desired class for most graphs (i.e., maximum coverage). Methodologically, we design a significant subgraph generator and a counterfactual subgraph autoencoder in our GlobalGCE, where the subgraphs and the rules can be effectively generated. Extensive experiments demonstrate the superiority of our GlobalGCE compared to existing baselines. Our code can be found at https://anonymous.4open.science/r/GlobalGCE-92E8.
Abstract:Job marketplace is a heterogeneous graph composed of interactions among members (job-seekers), companies, and jobs. Understanding and modeling job marketplace can benefit both job seekers and employers, ultimately contributing to the greater good of the society. However, existing graph neural network (GNN)-based methods have shallow understandings of the associated textual features and heterogeneous relations. To address the above challenges, we propose PLM4Job, a job marketplace foundation model that tightly couples pretrained language models (PLM) with job market graph, aiming to fully utilize the pretrained knowledge and reasoning ability to model member/job textual features as well as various member-job relations simultaneously. In the pretraining phase, we propose a heterogeneous ego-graph-based prompting strategy to model and aggregate member/job textual features based on the topological structure around the target member/job node, where entity type embeddings and graph positional embeddings are introduced accordingly to model different entities and their heterogeneous relations. Meanwhile, a proximity-aware attention alignment strategy is designed to dynamically adjust the attention of the PLM on ego-graph node tokens in the prompt, such that the attention can be better aligned with job marketplace semantics. Extensive experiments at LinkedIn demonstrate the effectiveness of PLM4Job.
Abstract:The remarkable success of Large Language Models (LLMs) has ushered natural language processing (NLP) research into a new era. Despite their diverse capabilities, LLMs trained on different corpora exhibit varying strengths and weaknesses, leading to challenges in maximizing their overall efficiency and versatility. To address these challenges, recent studies have explored collaborative strategies for LLMs. This paper provides a comprehensive overview of this emerging research area, highlighting the motivation behind such collaborations. Specifically, we categorize collaborative strategies into three primary approaches: Merging, Ensemble, and Cooperation. Merging involves integrating multiple LLMs in the parameter space. Ensemble combines the outputs of various LLMs. Cooperation} leverages different LLMs to allow full play to their diverse capabilities for specific tasks. We provide in-depth introductions to these methods from different perspectives and discuss their potential applications. Additionally, we outline future research directions, hoping this work will catalyze further studies on LLM collaborations and paving the way for advanced NLP applications.
Abstract:Tripartite graph-based recommender systems markedly diverge from traditional models by recommending unique combinations such as user groups and item bundles. Despite their effectiveness, these systems exacerbate the longstanding cold-start problem in traditional recommender systems, because any number of user groups or item bundles can be formed among users or items. To address this issue, we introduce a Consistency and Discrepancy-based graph contrastive learning method for tripartite graph-based Recommendation. This approach leverages two novel meta-path-based metrics consistency and discrepancy to capture nuanced, implicit associations between the recommended objects and the recommendees. These metrics, indicative of high-order similarities, can be efficiently calculated with infinite graph convolutional networks layers under a multi-objective optimization framework, using the limit theory of GCN.
Abstract:Causality lays the foundation for the trajectory of our world. Causal inference (CI), which aims to infer intrinsic causal relations among variables of interest, has emerged as a crucial research topic. Nevertheless, the lack of observation of important variables (e.g., confounders, mediators, exogenous variables, etc.) severely compromises the reliability of CI methods. The issue may arise from the inherent difficulty in measuring the variables. Additionally, in observational studies where variables are passively recorded, certain covariates might be inadvertently omitted by the experimenter. Depending on the type of unobserved variables and the specific CI task, various consequences can be incurred if these latent variables are carelessly handled, such as biased estimation of causal effects, incomplete understanding of causal mechanisms, lack of individual-level causal consideration, etc. In this survey, we provide a comprehensive review of recent developments in CI with latent variables. We start by discussing traditional CI techniques when variables of interest are assumed to be fully observed. Afterward, under the taxonomy of circumvention and inference-based methods, we provide an in-depth discussion of various CI strategies to handle latent variables, covering the tasks of causal effect estimation, mediation analysis, counterfactual reasoning, and causal discovery. Furthermore, we generalize the discussion to graph data where interference among units may exist. Finally, we offer fresh aspects for further advancement of CI with latent variables, especially new opportunities in the era of large language models (LLMs).
Abstract:Large Language Models (LLMs) have shown unprecedented performance in various real-world applications. However, they are known to generate factually inaccurate outputs, a.k.a. the hallucination problem. In recent years, incorporating external knowledge extracted from Knowledge Graphs (KGs) has become a promising strategy to improve the factual accuracy of LLM-generated outputs. Nevertheless, most existing explorations rely on LLMs themselves to perform KG knowledge extraction, which is highly inflexible as LLMs can only provide binary judgment on whether a certain knowledge (e.g., a knowledge path in KG) should be used. In addition, LLMs tend to pick only knowledge with direct semantic relationship with the input text, while potentially useful knowledge with indirect semantics can be ignored. In this work, we propose a principled framework KELP with three stages to handle the above problems. Specifically, KELP is able to achieve finer granularity of flexible knowledge extraction by generating scores for knowledge paths with input texts via latent semantic matching. Meanwhile, knowledge paths with indirect semantic relationships with the input text can also be considered via trained encoding between the selected paths in KG and the input text. Experiments on real-world datasets validate the effectiveness of KELP.
Abstract:Explainable AI (XAI) refers to techniques that provide human-understandable insights into the workings of AI models. Recently, the focus of XAI is being extended towards Large Language Models (LLMs) which are often criticized for their lack of transparency. This extension calls for a significant transformation in XAI methodologies because of two reasons. First, many existing XAI methods cannot be directly applied to LLMs due to their complexity advanced capabilities. Second, as LLMs are increasingly deployed across diverse industry applications, the role of XAI shifts from merely opening the "black box" to actively enhancing the productivity and applicability of LLMs in real-world settings. Meanwhile, unlike traditional machine learning models that are passive recipients of XAI insights, the distinct abilities of LLMs can reciprocally enhance XAI. Therefore, in this paper, we introduce Usable XAI in the context of LLMs by analyzing (1) how XAI can benefit LLMs and AI systems, and (2) how LLMs can contribute to the advancement of XAI. We introduce 10 strategies, introducing the key techniques for each and discussing their associated challenges. We also provide case studies to demonstrate how to obtain and leverage explanations. The code used in this paper can be found at: https://github.com/JacksonWuxs/UsableXAI_LLM.
Abstract:Model merging is to combine fine-tuned models derived from multiple domains, with the intent of enhancing the model's proficiency across various domains. The principal concern is the resolution of parameter conflicts. A substantial amount of existing research remedy this issue during the merging stage, with the latest study focusing on resolving this issue throughout the pruning stage. The DARE approach has exhibited promising outcomes when applied to a simplistic fine-tuned model. However, the efficacy of this method tends to wane when employed on complex fine-tuned models that show a significant parameter bias relative to the baseline model. In this paper, we introduce a dual-stage method termed Dynamic Pruning Partition Amplification (DPPA), devised to tackle the challenge of merging complex fine-tuned models. Initially, we introduce Dynamically Pruning (DP), an improved approach based on magnitude pruning, which aim is to enhance performance at higher pruning rates. Subsequently, we propose Dynamically Partition Amplification (DPA), a rescaling strategy, is designed to dynamically amplify parameter partitions in relation to their significance levels. The experimental results show that our method maintains a mere 20% of domain-specific parameters and yet delivers a performance comparable to other methodologies that preserve up to 90% of parameters. Furthermore, our method displays outstanding performance post-pruning, leading to a significant improvement of nearly 20% performance in model merging. We make our code on Github.
Abstract:Recently, there is a growing interest in developing next-generation recommender systems (RSs) based on pretrained large language models (LLMs), fully utilizing their encoded knowledge and reasoning ability. However, the semantic gap between natural language and recommendation tasks is still not well addressed, leading to multiple issues such as spuriously-correlated user/item descriptors, ineffective language modeling on user/item contents, and inefficient recommendations via auto-regression, etc. In this paper, we propose CLLM4Rec, the first generative RS that tightly integrates the LLM paradigm and ID paradigm of RS, aiming to address the above challenges simultaneously. We first extend the vocabulary of pretrained LLMs with user/item ID tokens to faithfully model the user/item collaborative and content semantics. Accordingly, in the pretraining stage, a novel soft+hard prompting strategy is proposed to effectively learn user/item collaborative/content token embeddings via language modeling on RS-specific corpora established from user-item interactions and user/item features, where each document is split into a prompt consisting of heterogeneous soft (user/item) tokens and hard (vocab) tokens and a main text consisting of homogeneous item tokens or vocab tokens that facilitates stable and effective language modeling. In addition, a novel mutual regularization strategy is introduced to encourage the CLLM4Rec to capture recommendation-oriented information from user/item contents. Finally, we propose a novel recommendation-oriented finetuning strategy for CLLM4Rec, where an item prediction head with multinomial likelihood is added to the pretrained CLLM4Rec backbone to predict hold-out items based on the soft+hard prompts established from masked user-item interaction history, where recommendations of multiple items can be generated efficiently.
Abstract:Large language models (LLMs) have recently transformed both the academic and industrial landscapes due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost for pre-training due to their unprecedented amounts of parameters. The disadvantage is exacerbated when new knowledge frequently needs to be introduced into the pre-trained model. Therefore, it is imperative to develop effective and efficient techniques to update pre-trained LLMs. Traditional methods encode new knowledge in pre-trained LLMs through direct fine-tuning. However, naively re-training LLMs can be computationally intensive and risks degenerating valuable pre-trained knowledge irrelevant to the update in the model. Recently, Knowledge-based Model Editing (KME) has attracted increasing attention, which aims to precisely modify the LLMs to incorporate specific knowledge, without negatively influencing other irrelevant knowledge. In this survey, we aim to provide a comprehensive and in-depth overview of recent advances in the field of KME. We first introduce a general formulation of KME to encompass different KME strategies. Afterward, we provide an innovative taxonomy of KME techniques based on how the new knowledge is introduced into pre-trained LLMs, and investigate existing KME strategies while analyzing key insights, advantages, and limitations of methods from each category. Moreover, representative metrics, datasets, and applications of KME are introduced accordingly. Finally, we provide an in-depth analysis regarding the practicality and remaining challenges of KME and suggest promising research directions for further advancement in this field.