Abstract:Large language models (LLMs) have revolutionized scientific research with their exceptional capabilities and transformed various fields. Among their practical applications, LLMs have been playing a crucial role in mitigating threats to human life, infrastructure, and the environment. Despite growing research in disaster LLMs, there remains a lack of systematic review and in-depth analysis of LLMs for natural disaster management. To address the gap, this paper presents a comprehensive survey of existing LLMs in natural disaster management, along with a taxonomy that categorizes existing works based on disaster phases and application scenarios. By collecting public datasets and identifying key challenges and opportunities, this study aims to guide the professional community in developing advanced LLMs for disaster management to enhance the resilience against natural disasters.
Abstract:To deal with distribution shifts in graph data, various graph out-of-distribution (OOD) generalization techniques have been recently proposed. These methods often employ a two-step strategy that first creates augmented environments and subsequently identifies invariant subgraphs to improve generalizability. Nevertheless, this approach could be suboptimal from the perspective of consistency. First, the process of augmenting environments by altering the graphs while preserving labels may lead to graphs that are not realistic or meaningfully related to the origin distribution, thus lacking distribution consistency. Second, the extracted subgraphs are obtained from directly modifying graphs, and may not necessarily maintain a consistent predictive relationship with their labels, thereby impacting label consistency. In response to these challenges, we introduce an innovative approach that aims to enhance these two types of consistency for graph OOD generalization. We propose a modifier to obtain both augmented and invariant graphs in a unified manner. With the augmented graphs, we enrich the training data without compromising the integrity of label-graph relationships. The label consistency enhancement in our framework further preserves the supervision information in the invariant graph. We conduct extensive experiments on real-world datasets to demonstrate the superiority of our framework over other state-of-the-art baselines.
Abstract:Large Language Models (LLMs) have shown impressive performance in various tasks, including knowledge graph completion (KGC). However, current studies mostly apply LLMs to classification tasks, like identifying missing triplets, rather than ranking-based tasks, where the model ranks candidate entities based on plausibility. This focus limits the practical use of LLMs in KGC, as real-world applications prioritize highly plausible triplets. Additionally, while graph paths can help infer the existence of missing triplets and improve completion accuracy, they often contain redundant information. To address these issues, we propose KG-CF, a framework tailored for ranking-based KGC tasks. KG-CF leverages LLMs' reasoning abilities to filter out irrelevant contexts, achieving superior results on real-world datasets. The code and datasets are available at \url{https://anonymous.4open.science/r/KG-CF}.
Abstract:Federated Graph Learning (FGL) enables multiple clients to jointly train powerful graph learning models, e.g., Graph Neural Networks (GNNs), without sharing their local graph data for graph-related downstream tasks, such as graph property prediction. In the real world, however, the graph data can suffer from significant distribution shifts across clients as the clients may collect their graph data for different purposes. In particular, graph properties are usually associated with invariant label-relevant substructures (i.e., subgraphs) across clients, while label-irrelevant substructures can appear in a client-specific manner. The issue of distribution shifts of graph data hinders the efficiency of GNN training and leads to serious performance degradation in FGL. To tackle the aforementioned issue, we propose a novel FGL framework entitled FedVN that eliminates distribution shifts through client-specific graph augmentation strategies with multiple learnable Virtual Nodes (VNs). Specifically, FedVN lets the clients jointly learn a set of shared VNs while training a global GNN model. To eliminate distribution shifts, each client trains a personalized edge generator that determines how the VNs connect local graphs in a client-specific manner. Furthermore, we provide theoretical analyses indicating that FedVN can eliminate distribution shifts of graph data across clients. Comprehensive experiments on four datasets under five settings demonstrate the superiority of our proposed FedVN over nine baselines.
Abstract:Functional Magnetic Resonance Image (fMRI) is commonly employed to study human brain activity, since it offers insight into the relationship between functional fluctuations and human behavior. To enhance analysis and comprehension of brain activity, Graph Neural Networks (GNNs) have been widely applied to the analysis of functional connectivities (FC) derived from fMRI data, due to their ability to capture the synergistic interactions among brain regions. However, in the human brain, performing complex tasks typically involves the activation of certain pathways, which could be represented as paths across graphs. As such, conventional GNNs struggle to learn from these pathways due to the long-range dependencies of multiple pathways. To address these challenges, we introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks. BrainMAP leverages sequential models to identify long-range correlations among sequentialized brain regions and incorporates an aggregation module based on Mixture of Experts (MoE) to learn from multiple pathways. Our comprehensive experiments highlight BrainMAP's superior performance. Furthermore, our framework enables explanatory analyses of crucial brain regions involved in tasks. Our code is provided at https://github.com/LzyFischer/Graph-Mamba.
Abstract:Spatial-temporal graphs are widely used in a variety of real-world applications. Spatial-Temporal Graph Neural Networks (STGNNs) have emerged as a powerful tool to extract meaningful insights from this data. However, in real-world applications, most nodes may not possess any available temporal data during training. For example, the pandemic dynamics of most cities on a geographical graph may not be available due to the asynchronous nature of outbreaks. Such a phenomenon disagrees with the training requirements of most existing spatial-temporal forecasting methods, which jeopardizes their effectiveness and thus blocks broader deployment. In this paper, we propose to formulate a novel problem of inductive forecasting with limited training data. In particular, given a spatial-temporal graph, we aim to learn a spatial-temporal forecasting model that can be easily generalized onto those nodes without any available temporal training data. To handle this problem, we propose a principled framework named ST-FiT. ST-FiT consists of two key learning components: temporal data augmentation and spatial graph topology learning. With such a design, ST-FiT can be used on top of any existing STGNNs to achieve superior performance on the nodes without training data. Extensive experiments verify the effectiveness of ST-FiT in multiple key perspectives.
Abstract:Graph Neural Networks (GNNs) have achieved remarkable success in various graph-based learning tasks. While their performance is often attributed to the powerful neighborhood aggregation mechanism, recent studies suggest that other components such as non-linear layers may also significantly affecting how GNNs process the input graph data in the spectral domain. Such evidence challenges the prevalent opinion that neighborhood aggregation mechanisms dominate the behavioral characteristics of GNNs in the spectral domain. To demystify such a conflict, this paper introduces a comprehensive benchmark to measure and evaluate GNNs' capability in capturing and leveraging the information encoded in different frequency components of the input graph data. Specifically, we first conduct an exploratory study demonstrating that GNNs can flexibly yield outputs with diverse frequency components even when certain frequencies are absent or filtered out from the input graph data. We then formulate a novel research problem of measuring and benchmarking the performance of GNNs from a spectral perspective. To take an initial step towards a comprehensive benchmark, we design an evaluation protocol supported by comprehensive theoretical analysis. Finally, we introduce a comprehensive benchmark on real-world datasets, revealing insights that challenge prevalent opinions from a spectral perspective. We believe that our findings will open new avenues for future advancements in this area. Our implementations can be found at: https://github.com/yushundong/Spectral-benchmark.
Abstract:Graph neural networks stand as the predominant technique for graph representation learning owing to their strong expressive power, yet the performance highly depends on the availability of high-quality labels in an end-to-end manner. Thus the pretraining and fine-tuning paradigm has been proposed to mitigate the label cost issue. Subsequently, the gap between the pretext tasks and downstream tasks has spurred the development of graph prompt learning which inserts a set of graph prompts into the original graph data with minimal parameters while preserving competitive performance. However, the current exploratory works are still limited since they all concentrate on learning fixed task-specific prompts which may not generalize well across the diverse instances that the task comprises. To tackle this challenge, we introduce Instance-Aware Graph Prompt Learning (IA-GPL) in this paper, aiming to generate distinct prompts tailored to different input instances. The process involves generating intermediate prompts for each instance using a lightweight architecture, quantizing these prompts through trainable codebook vectors, and employing the exponential moving average technique to ensure stable training. Extensive experiments conducted on multiple datasets and settings showcase the superior performance of IA-GPL compared to state-of-the-art baselines.
Abstract:Geometric shape features have been widely used as strong predictors for image classification. Nevertheless, most existing classifiers such as deep neural networks (DNNs) directly leverage the statistical correlations between these shape features and target variables. However, these correlations can often be spurious and unstable across different environments (e.g., in different age groups, certain types of brain changes have unstable relations with neurodegenerative disease); hence leading to biased or inaccurate predictions. In this paper, we introduce a novel framework that for the first time develops invariant shape representation learning (ISRL) to further strengthen the robustness of image classifiers. In contrast to existing approaches that mainly derive features in the image space, our model ISRL is designed to jointly capture invariant features in latent shape spaces parameterized by deformable transformations. To achieve this goal, we develop a new learning paradigm based on invariant risk minimization (IRM) to learn invariant representations of image and shape features across multiple training distributions/environments. By embedding the features that are invariant with regard to target variables in different environments, our model consistently offers more accurate predictions. We validate our method by performing classification tasks on both simulated 2D images, real 3D brain and cine cardiovascular magnetic resonance images (MRIs). Our code is publicly available at https://github.com/tonmoy-hossain/ISRL.
Abstract:Federated Graph Learning (FGL) is tasked with training machine learning models, such as Graph Neural Networks (GNNs), for multiple clients, each with its own graph data. Existing methods usually assume that each client has both node features and graph structure of its graph data. In real-world scenarios, however, there exist federated systems where only a part of the clients have such data while other clients (i.e. graphless clients) may only have node features. This naturally leads to a novel problem in FGL: how to jointly train a model over distributed graph data with graphless clients? In this paper, we propose a novel framework FedGLS to tackle the problem in FGL with graphless clients. In FedGLS, we devise a local graph learner on each graphless client which learns the local graph structure with the structure knowledge transferred from other clients. To enable structure knowledge transfer, we design a GNN model and a feature encoder on each client. During local training, the feature encoder retains the local graph structure knowledge together with the GNN model via knowledge distillation, and the structure knowledge is transferred among clients in global update. Our extensive experiments demonstrate the superiority of the proposed FedGLS over five baselines.