Abstract:The advancement of large language models (LLMs) has led to a greater challenge of having a rigorous and systematic evaluation of complex tasks performed, especially in enterprise applications. Therefore, LLMs need to be able to benchmark enterprise datasets for various tasks. This work presents a systematic exploration of benchmarking strategies tailored to LLM evaluation, focusing on the utilization of domain-specific datasets and consisting of a variety of NLP tasks. The proposed evaluation framework encompasses 25 publicly available datasets from diverse enterprise domains like financial services, legal, cyber security, and climate and sustainability. The diverse performance of 13 models across different enterprise tasks highlights the importance of selecting the right model based on the specific requirements of each task. Code and prompts are available on GitHub.
Abstract:Understanding the causal interaction of time series variables can contribute to time series data analysis for many real-world applications, such as climate forecasting and extreme weather alerts. However, causal relationships are difficult to be fully observed in real-world complex settings, such as spatial-temporal data from deployed sensor networks. Therefore, to capture fine-grained causal relations among spatial-temporal variables for further a more accurate and reliable time series analysis, we first design a conceptual fine-grained causal model named TBN Granger Causality, which adds time-respecting Bayesian Networks to the previous time-lagged Neural Granger Causality to offset the instantaneous effects. Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner to help forecast time series data and detect possible anomalies during the forecast. For evaluations, besides the causality discovery benchmark Lorenz-96, we also test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
Abstract:Many real-world graphs frequently present challenges for graph learning due to the presence of both heterophily and heterogeneity. However, existing benchmarks for graph learning often focus on heterogeneous graphs with homophily or homogeneous graphs with heterophily, leaving a gap in understanding how methods perform on graphs that are both heterogeneous and heterophilic. To bridge this gap, we introduce H2GB, a novel graph benchmark that brings together the complexities of both the heterophily and heterogeneity properties of graphs. Our benchmark encompasses 9 diverse real-world datasets across 5 domains, 28 baseline model implementations, and 26 benchmark results. In addition, we present a modular graph transformer framework UnifiedGT and a new model variant, H2G-former, that excels at this challenging benchmark. By integrating masked label embeddings, cross-type heterogeneous attention, and type-specific FFNs, H2G-former effectively tackles graph heterophily and heterogeneity. Extensive experiments across 26 baselines on H2GB reveal inadequacies of current models on heterogeneous heterophilic graph learning, and demonstrate the superiority of our H2G-former over existing solutions. Both the benchmark and the framework are available on GitHub (https://github.com/junhongmit/H2GB) and PyPI (https://pypi.org/project/H2GB), and documentation can be found at https://junhongmit.github.io/H2GB/.
Abstract:Data collected in the real world often encapsulates historical discrimination against disadvantaged groups and individuals. Existing fair machine learning (FairML) research has predominantly focused on mitigating discriminative bias in the model prediction, with far less effort dedicated towards exploring how to trace biases present in the data, despite its importance for the transparency and interpretability of FairML. To fill this gap, we investigate a novel research problem: discovering samples that reflect biases/prejudices from the training data. Grounding on the existing fairness notions, we lay out a sample bias criterion and propose practical algorithms for measuring and countering sample bias. The derived bias score provides intuitive sample-level attribution and explanation of historical bias in data. On this basis, we further design two FairML strategies via sample-bias-informed minimal data editing. They can mitigate both group and individual unfairness at the cost of minimal or zero predictive utility loss. Extensive experiments and analyses on multiple real-world datasets demonstrate the effectiveness of our methods in explaining and mitigating unfairness. Code is available at https://github.com/ZhiningLiu1998/AIM.
Abstract:We study both stream-based and pool-based active learning with neural network approximations. A recent line of works proposed bandit-based approaches that transformed active learning into a bandit problem, achieving both theoretical and empirical success. However, the performance and computational costs of these methods may be susceptible to the number of classes, denoted as $K$, due to this transformation. Therefore, this paper seeks to answer the question: "How can we mitigate the adverse impacts of $K$ while retaining the advantages of principled exploration and provable performance guarantees in active learning?" To tackle this challenge, we propose two algorithms based on the newly designed exploitation and exploration neural networks for stream-based and pool-based active learning. Subsequently, we provide theoretical performance guarantees for both algorithms in a non-parametric setting, demonstrating a slower error-growth rate concerning $K$ for the proposed approaches. We use extensive experiments to evaluate the proposed algorithms, which consistently outperform state-of-the-art baselines.
Abstract:This paper studies the relationship between the surface form of a mathematical problem and its solvability by large language models. We find that subtle alterations in the surface form can significantly impact the answer distribution and the solve rate, exposing the language model's lack of robustness and sensitivity to the surface form in reasoning through complex problems. To improve mathematical reasoning performance, we propose Self-Consistency-over-Paraphrases (SCoP), which diversifies reasoning paths from specific surface forms of the problem. We evaluate our approach on four mathematics reasoning benchmarks over three large language models and show that SCoP improves mathematical reasoning performance over vanilla self-consistency, particularly for problems initially deemed unsolvable. Finally, we provide additional experiments and discussion regarding problem difficulty and surface forms, including cross-model difficulty agreement and paraphrasing transferability, and Variance of Variations (VOV) for language model evaluation.
Abstract:Fairness-aware graph neural networks (GNNs) have gained a surge of attention as they can reduce the bias of predictions on any demographic group (e.g., female) in graph-based applications. Although these methods greatly improve the algorithmic fairness of GNNs, the fairness can be easily corrupted by carefully designed adversarial attacks. In this paper, we investigate the problem of adversarial attacks on fairness of GNNs and propose G-FairAttack, a general framework for attacking various types of fairness-aware GNNs in terms of fairness with an unnoticeable effect on prediction utility. In addition, we propose a fast computation technique to reduce the time complexity of G-FairAttack. The experimental study demonstrates that G-FairAttack successfully corrupts the fairness of different types of GNNs while keeping the attack unnoticeable. Our study on fairness attacks sheds light on potential vulnerabilities in fairness-aware GNNs and guides further research on the robustness of GNNs in terms of fairness. The open-source code is available at https://github.com/zhangbinchi/G-FairAttack.
Abstract:Recent works have demonstrated the effectiveness of self-alignment in which a large language model is, by itself, aligned to follow general instructions through the automatic generation of instructional data using a handful of human-written seeds. Instead of general alignment, in this work, we focus on self-alignment for expert domain specialization (e.g., biomedicine), discovering it to be very effective for improving zero-shot and few-shot performance in target domains of interest. As a preliminary, we first present the benchmark results of existing aligned models within a specialized domain, which reveals the marginal effect that "generic" instruction-following training has on downstream expert domains' performance. To remedy this, we explore self-specialization that leverages domain-specific unlabelled data and a few labeled seeds for the self-alignment process. When augmented with retrieval to reduce hallucination and enhance concurrency of the alignment, self-specialization offers an effective (and efficient) way of "carving out" an expert model out of a "generalist", pre-trained LLM where different domains of expertise are originally combined in a form of "superposition". Our experimental results on a biomedical domain show that our self-specialized model (30B) outperforms its base model, MPT-30B by a large margin and even surpasses larger popular models based on LLaMA-65B, highlighting its potential and practicality for specialization, especially considering its efficiency in terms of data and parameters.
Abstract:Class imbalance is prevalent in real-world node classification tasks and often biases graph learning models toward majority classes. Most existing studies root from a node-centric perspective and aim to address the class imbalance in training data by node/class-wise reweighting or resampling. In this paper, we approach the source of the class-imbalance bias from an under-explored topology-centric perspective. Our investigation reveals that beyond the inherently skewed training class distribution, the graph topology also plays an important role in the formation of predictive bias: we identify two fundamental challenges, namely ambivalent and distant message-passing, that can exacerbate the bias by aggravating majority-class over-generalization and minority-class misclassification. In light of these findings, we devise a lightweight topological augmentation method ToBA to dynamically rectify the nodes influenced by ambivalent/distant message-passing during graph learning, so as to mitigate the class-imbalance bias. We highlight that ToBA is a model-agnostic, efficient, and versatile solution that can be seamlessly combined with and further boost other imbalance-handling techniques. Systematic experiments validate the superior performance of ToBA in both promoting imbalanced node classification and mitigating the prediction bias between different classes.
Abstract:Multivariate time series (MTS) imputation is a widely studied problem in recent years. Existing methods can be divided into two main groups, including (1) deep recurrent or generative models that primarily focus on time series features, and (2) graph neural networks (GNNs) based models that utilize the topological information from the inherent graph structure of MTS as relational inductive bias for imputation. Nevertheless, these methods either neglect topological information or assume the graph structure is fixed and accurately known. Thus, they fail to fully utilize the graph dynamics for precise imputation in more challenging MTS data such as networked time series (NTS), where the underlying graph is constantly changing and might have missing edges. In this paper, we propose a novel approach to overcome these limitations. First, we define the problem of imputation over NTS which contains missing values in both node time series features and graph structures. Then, we design a new model named PoGeVon which leverages variational autoencoder (VAE) to predict missing values over both node time series features and graph structures. In particular, we propose a new node position embedding based on random walk with restart (RWR) in the encoder with provable higher expressive power compared with message-passing based graph neural networks (GNNs). We further design a decoder with 3-stage predictions from the perspective of multi-task learning to impute missing values in both time series and graph structures reciprocally. Experiment results demonstrate the effectiveness of our model over baselines.