Abstract:Shadows introduce challenges such as reduced brightness, texture deterioration, and color distortion in images, complicating a holistic solution. This study presents \textbf{ShadowHack}, a divide-and-conquer strategy that tackles these complexities by decomposing the original task into luminance recovery and color remedy. To brighten shadow regions and repair the corrupted textures in the luminance space, we customize LRNet, a U-shaped network with a rectified outreach attention module, to enhance information interaction and recalibrate contaminated attention maps. With luminance recovered, CRNet then leverages cross-attention mechanisms to revive vibrant colors, producing visually compelling results. Extensive experiments on multiple datasets are conducted to demonstrate the superiority of ShadowHack over existing state-of-the-art solutions both quantitatively and qualitatively, highlighting the effectiveness of our design. Our code will be made publicly available at https://github.com/lime-j/ShadowHack
Abstract:Shadow, as a natural consequence of light interacting with objects, plays a crucial role in shaping the aesthetics of an image, which however also impairs the content visibility and overall visual quality. Recent shadow removal approaches employ the mechanism of attention, due to its effectiveness, as a key component. However, they often suffer from two issues including large model size and high computational complexity for practical use. To address these shortcomings, this work devises a lightweight yet accurate shadow removal framework. First, we analyze the characteristics of the shadow removal task to seek the key information required for reconstructing shadow regions and designing a novel regional attention mechanism to effectively capture such information. Then, we customize a Regional Attention Shadow Removal Model (RASM, in short), which leverages non-shadow areas to assist in restoring shadow ones. Unlike existing attention-based models, our regional attention strategy allows each shadow region to interact more rationally with its surrounding non-shadow areas, for seeking the regional contextual correlation between shadow and non-shadow areas. Extensive experiments are conducted to demonstrate that our proposed method delivers superior performance over other state-of-the-art models in terms of accuracy and efficiency, making it appealing for practical applications.
Abstract:Due to the nature of enhancement--the absence of paired ground-truth information, high-level vision tasks have been recently employed to evaluate the performance of low-light image enhancement. A widely-used manner is to see how accurately an object detector trained on enhanced low-light images by different candidates can perform with respect to annotated semantic labels. In this paper, we first demonstrate that the mentioned approach is generally prone to overfitting, and thus diminishes its measurement reliability. In search of a proper evaluation metric, we propose LIME-Bench, the first online benchmark platform designed to collect human preferences for low-light enhancement, providing a valuable dataset for validating the correlation between human perception and automated evaluation metrics. We then customize LIME-Eval, a novel evaluation framework that utilizes detectors pre-trained on standard-lighting datasets without object annotations, to judge the quality of enhanced images. By adopting an energy-based strategy to assess the accuracy of output confidence maps, our LIME-Eval can simultaneously bypass biases associated with retraining detectors and circumvent the reliance on annotations for dim images. Comprehensive experiments are provided to reveal the effectiveness of our LIME-Eval. Our benchmark platform (https://huggingface.co/spaces/lime-j/eval) and code (https://github.com/lime-j/lime-eval) are available online.
Abstract:Recent deep-learning-based approaches to single-image reflection removal have shown promising advances, primarily for two reasons: 1) the utilization of recognition-pretrained features as inputs, and 2) the design of dual-stream interaction networks. However, according to the Information Bottleneck principle, high-level semantic clues tend to be compressed or discarded during layer-by-layer propagation. Additionally, interactions in dual-stream networks follow a fixed pattern across different layers, limiting overall performance. To address these limitations, we propose a novel architecture called Reversible Decoupling Network (RDNet), which employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass. Furthermore, we customize a transmission-rate-aware prompt generator to dynamically calibrate features, further boosting performance. Extensive experiments demonstrate the superiority of RDNet over existing SOTA methods on five widely-adopted benchmark datasets. Our code will be made publicly available.
Abstract:Compared with still image object detection, video object detection (VOD) needs to particularly concern the high across-frame variation in object appearance, and the diverse deterioration in some frames. In principle, the detection in a certain frame of a video can benefit from information in other frames. Thus, how to effectively aggregate features across different frames is key to the target problem. Most of contemporary aggregation methods are tailored for two-stage detectors, suffering from high computational costs due to the dual-stage nature. On the other hand, although one-stage detectors have made continuous progress in handling static images, their applicability to VOD lacks sufficient exploration. To tackle the above issues, this study invents a very simple yet potent strategy of feature selection and aggregation, gaining significant accuracy at marginal computational expense. Concretely, for cutting the massive computation and memory consumption from the dense prediction characteristic of one-stage object detectors, we first condense candidate features from dense prediction maps. Then, the relationship between a target frame and its reference frames is evaluated to guide the aggregation. Comprehensive experiments and ablation studies are conducted to validate the efficacy of our design, and showcase its advantage over other cutting-edge VOD methods in both effectiveness and efficiency. Notably, our model reaches \emph{a new record performance, i.e., 92.9\% AP50 at over 30 FPS on the ImageNet VID dataset on a single 3090 GPU}, making it a compelling option for large-scale or real-time applications. The implementation is simple, and accessible at \url{https://github.com/YuHengsss/YOLOV}.
Abstract:Many real-world graphs frequently present challenges for graph learning due to the presence of both heterophily and heterogeneity. However, existing benchmarks for graph learning often focus on heterogeneous graphs with homophily or homogeneous graphs with heterophily, leaving a gap in understanding how methods perform on graphs that are both heterogeneous and heterophilic. To bridge this gap, we introduce H2GB, a novel graph benchmark that brings together the complexities of both the heterophily and heterogeneity properties of graphs. Our benchmark encompasses 9 diverse real-world datasets across 5 domains, 28 baseline model implementations, and 26 benchmark results. In addition, we present a modular graph transformer framework UnifiedGT and a new model variant, H2G-former, that excels at this challenging benchmark. By integrating masked label embeddings, cross-type heterogeneous attention, and type-specific FFNs, H2G-former effectively tackles graph heterophily and heterogeneity. Extensive experiments across 26 baselines on H2GB reveal inadequacies of current models on heterogeneous heterophilic graph learning, and demonstrate the superiority of our H2G-former over existing solutions. Both the benchmark and the framework are available on GitHub (https://github.com/junhongmit/H2GB) and PyPI (https://pypi.org/project/H2GB), and documentation can be found at https://junhongmit.github.io/H2GB/.
Abstract:This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of generating brighter, clearer, and visually appealing results when dealing with a variety of conditions, including ultra-high resolution (4K and beyond), non-uniform illumination, backlighting, extreme darkness, and night scenes. A notable total of 428 participants registered for the challenge, with 22 teams ultimately making valid submissions. This paper meticulously evaluates the state-of-the-art advancements in enhancing low-light images, reflecting the significant progress and creativity in this field.
Abstract:Time-to-Contact (TTC) estimation is a critical task for assessing collision risk and is widely used in various driver assistance and autonomous driving systems. The past few decades have witnessed development of related theories and algorithms. The prevalent learning-based methods call for a large-scale TTC dataset in real-world scenarios. In this work, we present a large-scale object oriented TTC dataset in the driving scene for promoting the TTC estimation by a monocular camera. To collect valuable samples and make data with different TTC values relatively balanced, we go through thousands of hours of driving data and select over 200K sequences with a preset data distribution. To augment the quantity of small TTC cases, we also generate clips using the latest Neural rendering methods. Additionally, we provide several simple yet effective TTC estimation baselines and evaluate them extensively on the proposed dataset to demonstrate their effectiveness. The proposed dataset is publicly available at https://open-dataset.tusen.ai/TSTTC.
Abstract:Edge detection, as a core component in a wide range of visionoriented tasks, is to identify object boundaries and prominent edges in natural images. An edge detector is desired to be both efficient and accurate for practical use. To achieve the goal, two key issues should be concerned: 1) How to liberate deep edge models from inefficient pre-trained backbones that are leveraged by most existing deep learning methods, for saving the computational cost and cutting the model size; and 2) How to mitigate the negative influence from noisy or even wrong labels in training data, which widely exist in edge detection due to the subjectivity and ambiguity of annotators, for the robustness and accuracy. In this paper, we attempt to simultaneously address the above problems via developing a collaborative learning based model, termed PEdger. The principle behind our PEdger is that, the information learned from different training moments and heterogeneous (recurrent and non recurrent in this work) architectures, can be assembled to explore robust knowledge against noisy annotations, even without the help of pre-training on extra data. Extensive ablation studies together with quantitative and qualitative experimental comparisons on the BSDS500 and NYUD datasets are conducted to verify the effectiveness of our design, and demonstrate its superiority over other competitors in terms of accuracy, speed, and model size. Codes can be found at https://github.co/ForawardStar/PEdger.
Abstract:The reflection superposition phenomenon is complex and widely distributed in the real world, which derives various simplified linear and nonlinear formulations of the problem. In this paper, based on the investigation of the weaknesses of existing models, we propose a more general form of the superposition model by introducing a learnable residue term, which can effectively capture residual information during decomposition, guiding the separated layers to be complete. In order to fully capitalize on its advantages, we further design the network structure elaborately, including a novel dual-stream interaction mechanism and a powerful decomposition network with a semantic pyramid encoder. Extensive experiments and ablation studies are conducted to verify our superiority over state-of-the-art approaches on multiple real-world benchmark datasets. Our code is publicly available at https://github.com/mingcv/DSRNet.