Nanjing University of Science and Technology, Nanjing, China
Abstract:While Multimodal Large Language Models (MLLMs) have achieved impressive performance on semantic tasks, their spatial intelligence--crucial for robust and grounded AI systems--remains underdeveloped. Existing benchmarks fall short of diagnosing this limitation: they either focus on overly simplified qualitative reasoning or rely on domain-specific indoor data, constrained by the lack of outdoor datasets with verifiable metric ground truth. To bridge this gap, we introduce a large-scale benchmark built from pedestrian-perspective videos captured with synchronized stereo cameras, LiDAR, and IMU/GPS sensors. This dataset provides metrically precise 3D information, enabling the automatic generation of spatial reasoning questions that span a hierarchical spectrum--from qualitative relational reasoning to quantitative metric and kinematic understanding. Evaluations reveal that the performance gains observed in structured indoor benchmarks vanish in open-world settings. Further analysis using synthetic abnormal scenes and blinding tests confirms that current MLLMs depend heavily on linguistic priors instead of grounded visual reasoning. Our benchmark thus provides a principled platform for diagnosing these limitations and advancing physically grounded spatial intelligence.
Abstract:Deep multi-agent reinforcement learning (MARL) algorithms are booming in the field of collaborative intelligence, and StarCraft multi-agent challenge (SMAC) is widely-used as the benchmark therein. However, imaginary opponents of MARL algorithms are practically configured and controlled in a fixed built-in AI mode, which causes less diversity and versatility in algorithm evaluation. To address this issue, in this work, we establish a multi-agent algorithm-vs-algorithm environment, named StarCraft II battle arena (SC2BA), to refresh the benchmarking of MARL algorithms in an adversary paradigm. Taking StarCraft as infrastructure, the SC2BA environment is specifically created for inter-algorithm adversary with the consideration of fairness, usability and customizability, and meantime an adversarial PyMARL (APyMARL) library is developed with easy-to-use interfaces/modules. Grounding in SC2BA, we benchmark those classic MARL algorithms in two types of adversarial modes: dual-algorithm paired adversary and multi-algorithm mixed adversary, where the former conducts the adversary of pairwise algorithms while the latter focuses on the adversary to multiple behaviors from a group of algorithms. The extensive benchmark experiments exhibit some thought-provoking observations/problems in the effectivity, sensibility and scalability of these completed algorithms. The SC2BA environment as well as reproduced experiments are released in \href{https://github.com/dooliu/SC2BA}{Github}, and we believe that this work could mark a new step for the MARL field in the coming years.
Abstract:Music Emotion Recogniser (MER) research faces challenges due to limited high-quality annotated datasets and difficulties in addressing cross-track feature drift. This work presents two primary contributions to address these issues. Memo2496, a large-scale dataset, offers 2496 instrumental music tracks with continuous valence arousal labels, annotated by 30 certified music specialists. Annotation quality is ensured through calibration with extreme emotion exemplars and a consistency threshold of 0.25, measured by Euclidean distance in the valence arousal space. Furthermore, the Dual-view Adaptive Music Emotion Recogniser (DAMER) is introduced. DAMER integrates three synergistic modules: Dual Stream Attention Fusion (DSAF) facilitates token-level bidirectional interaction between Mel spectrograms and cochleagrams via cross attention mechanisms; Progressive Confidence Labelling (PCL) generates reliable pseudo labels employing curriculum-based temperature scheduling and consistency quantification using Jensen Shannon divergence; and Style Anchored Memory Learning (SAML) maintains a contrastive memory queue to mitigate cross-track feature drift. Extensive experiments on the Memo2496, 1000songs, and PMEmo datasets demonstrate DAMER's state-of-the-art performance, improving arousal dimension accuracy by 3.43%, 2.25%, and 0.17%, respectively. Ablation studies and visualisation analyses validate each module's contribution. Both the dataset and source code are publicly available.
Abstract:Diffusion models can unintentionally reproduce training examples, raising privacy and copyright concerns as these systems are increasingly deployed at scale. Existing inference-time mitigation methods typically manipulate classifier-free guidance (CFG) or perturb prompt embeddings; however, they often struggle to reduce memorization without compromising alignment with the conditioning prompt. We introduce CAPTAIN, a training-free framework that mitigates memorization by directly modifying latent features during denoising. CAPTAIN first applies frequency-based noise initialization to reduce the tendency to replicate memorized patterns early in the denoising process. It then identifies the optimal denoising timesteps for feature injection and localizes memorized regions. Finally, CAPTAIN injects semantically aligned features from non-memorized reference images into localized latent regions, suppressing memorization while preserving prompt fidelity and visual quality. Our experiments show that CAPTAIN achieves substantial reductions in memorization compared to CFG-based baselines while maintaining strong alignment with the intended prompt.
Abstract:We introduce \emph{Metric-Fair Prompting}, a fairness-aware prompting framework that guides large language models (LLMs) to make decisions under metric-fairness constraints. In the application of multiple-choice medical question answering, each {(question, option)} pair is treated as a binary instance with label $+1$ (correct) or $-1$ (incorrect). To promote {individual fairness}~--~treating similar instances similarly~--~we compute question similarity using NLP embeddings and solve items in \emph{joint pairs of similar questions} rather than in isolation. The prompt enforces a global decision protocol: extract decisive clinical features, map each \((\text{question}, \text{option})\) to a score $f(x)$ that acts as confidence, and impose a Lipschitz-style constraint so that similar inputs receive similar scores and, hence, consistent outputs. Evaluated on the {MedQA (US)} benchmark, Metric-Fair Prompting is shown to improve performance over standard single-item prompting, demonstrating that fairness-guided, confidence-oriented reasoning can enhance LLM accuracy on high-stakes clinical multiple-choice questions.
Abstract:Large Language Models (LLMs) are increasingly integrated into intelligent tutoring systems to provide human-like and adaptive instruction. However, most existing approaches fail to capture how students' knowledge evolves dynamically across their proficiencies, conceptual gaps, and forgetting patterns. This challenge is particularly acute in mathematics tutoring, where effective instruction requires fine-grained scaffolding precisely calibrated to each student's mastery level and cognitive retention. To address this issue, we propose TASA (Teaching According to Students' Aptitude), a student-aware tutoring framework that integrates persona, memory, and forgetting dynamics for personalized mathematics learning. Specifically, TASA maintains a structured student persona capturing proficiency profiles and an event memory recording prior learning interactions. By incorporating a continuous forgetting curve with knowledge tracing, TASA dynamically updates each student's mastery state and generates contextually appropriate, difficulty-calibrated questions and explanations. Empirical results demonstrate that TASA achieves superior learning outcomes and more adaptive tutoring behavior compared to representative baselines, underscoring the importance of modeling temporal forgetting and learner profiles in LLM-based tutoring systems.
Abstract:Cross-Domain Few-Shot Learning (CDFSL) endeavors to transfer generalized knowledge from the source domain to target domains using only a minimal amount of training data, which faces a triplet of learning challenges in the meantime, i.e., semantic disjoint, large domain discrepancy, and data scarcity. Different from predominant CDFSL works focused on generalized representations, we make novel attempts to construct Intermediate Domain Proxies (IDP) with source feature embeddings as the codebook and reconstruct the target domain feature with this learned codebook. We then conduct an empirical study to explore the intrinsic attributes from perspectives of visual styles and semantic contents in intermediate domain proxies. Reaping benefits from these attributes of intermediate domains, we develop a fast domain alignment method to use these proxies as learning guidance for target domain feature transformation. With the collaborative learning of intermediate domain reconstruction and target feature transformation, our proposed model is able to surpass the state-of-the-art models by a margin on 8 cross-domain few-shot learning benchmarks.
Abstract:We present **Lean4PHYS**, a comprehensive reasoning framework for college-level physics problems in Lean4. **Lean4PHYS** includes *LeanPhysBench*, a college-level benchmark for formal physics reasoning in Lean4, which contains 200 hand-crafted and peer-reviewed statements derived from university textbooks and physics competition problems. To establish a solid foundation for formal reasoning in physics, we also introduce *PhysLib*, a community-driven repository containing fundamental unit systems and theorems essential for formal physics reasoning. Based on the benchmark and Lean4 repository we composed in **Lean4PHYS**, we report baseline results using major expert Math Lean4 provers and state-of-the-art closed-source models, with the best performance of DeepSeek-Prover-V2-7B achieving only 16% and Claude-Sonnet-4 achieving 35%. We also conduct a detailed analysis showing that our *PhysLib* can achieve an average improvement of 11.75% in model performance. This demonstrates the challenging nature of our *LeanPhysBench* and the effectiveness of *PhysLib*. To the best of our knowledge, this is the first study to provide a physics benchmark in Lean4.
Abstract:Gaussian splatting (GS) struggles with degraded rendering quality on low-cost devices. To address this issue, we present edge collaborative GS (ECO-GS), where each user can switch between a local small GS model to guarantee timeliness and a remote large GS model to guarantee fidelity. However, deciding how to engage the large GS model is nontrivial, due to the interdependency between rendering requirements and resource conditions. To this end, we propose integrated rendering and communication (IRAC), which jointly optimizes collaboration status (i.e., deciding whether to engage large GS) and edge power allocation (i.e., enabling remote rendering) under communication constraints across different users by minimizing a newly-derived GS switching function. Despite the nonconvexity of the problem, we propose an efficient penalty majorization minimization (PMM) algorithm to obtain the critical point solution. Furthermore, we develop an imitation learning optimization (ILO) algorithm, which reduces the computational time by over 100x compared to PMM. Experiments demonstrate the superiority of PMM and the real-time execution capability of ILO.
Abstract:Recent advances in embodied AI highlight the potential of vision language models (VLMs) as agents capable of perception, reasoning, and interaction in complex environments. However, top-performing systems rely on large-scale models that are costly to deploy, while smaller VLMs lack the necessary knowledge and skills to succeed. To bridge this gap, we present \textit{Embodied Reasoning Agent (ERA)}, a two-stage framework that integrates prior knowledge learning and online reinforcement learning (RL). The first stage, \textit{Embodied Prior Learning}, distills foundational knowledge from three types of data: (1) Trajectory-Augmented Priors, which enrich existing trajectory data with structured reasoning generated by stronger models; (2) Environment-Anchored Priors, which provide in-environment knowledge and grounding supervision; and (3) External Knowledge Priors, which transfer general knowledge from out-of-environment datasets. In the second stage, we develop an online RL pipeline that builds on these priors to further enhance agent performance. To overcome the inherent challenges in agent RL, including long horizons, sparse rewards, and training instability, we introduce three key designs: self-summarization for context management, dense reward shaping, and turn-level policy optimization. Extensive experiments on both high-level planning (EB-ALFRED) and low-level control (EB-Manipulation) tasks demonstrate that ERA-3B surpasses both prompting-based large models and previous training-based baselines. Specifically, it achieves overall improvements of 8.4\% on EB-ALFRED and 19.4\% on EB-Manipulation over GPT-4o, and exhibits strong generalization to unseen tasks. Overall, ERA offers a practical path toward scalable embodied intelligence, providing methodological insights for future embodied AI systems.