Nanjing University of Science and Technology, Nanjing, China
Abstract:In Open-set Supervised Anomaly Detection (OSAD), the existing methods typically generate pseudo anomalies to compensate for the scarcity of observed anomaly samples, while overlooking critical priors of normal samples, leading to less effective discriminative boundaries. To address this issue, we propose a Distribution Prototype Diffusion Learning (DPDL) method aimed at enclosing normal samples within a compact and discriminative distribution space. Specifically, we construct multiple learnable Gaussian prototypes to create a latent representation space for abundant and diverse normal samples and learn a Schr\"odinger bridge to facilitate a diffusive transition toward these prototypes for normal samples while steering anomaly samples away. Moreover, to enhance inter-sample separation, we design a dispersion feature learning way in hyperspherical space, which benefits the identification of out-of-distribution anomalies. Experimental results demonstrate the effectiveness and superiority of our proposed DPDL, achieving state-of-the-art performance on 9 public datasets.
Abstract:Reliable multimodal learning in the presence of noisy data is a widely concerned issue, especially in safety-critical applications. Many reliable multimodal methods delve into addressing modality-specific or cross-modality noise. However, they fail to handle the coexistence of both types of noise efficiently. Moreover, the lack of comprehensive consideration for noise at both global and individual levels limits their reliability. To address these issues, a reliable multimodal classification method dubbed Multi-Level Inter-Class Confusing Information Removal Network (MICINet) is proposed. MICINet achieves the reliable removal of both types of noise by unifying them into the concept of Inter-class Confusing Information (\textit{ICI}) and eliminating it at both global and individual levels. Specifically, MICINet first reliably learns the global \textit{ICI} distribution through the proposed \textbf{\textit{Global \textbf{ICI} Learning Module}}. Then, it introduces the \textbf{\textit{Global-guided Sample ICI Learning module}} to efficiently remove global-level \textit{ICI} from sample features utilizing the learned global \textit{ICI} distribution. Subsequently, the \textbf{\textit{Sample-adaptive Cross-modality Information Compensation module}} is designed to remove individual-level \textit{ICI} from each sample reliably. This is achieved through interpretable cross-modality information compensation based on the complementary relationship between discriminative features and \textit{ICI} and the perception of the relative quality of modalities introduced by the relative discriminative power. Experiments on four datasets demonstrate that MICINet outperforms other state-of-the-art reliable multimodal classification methods under various noise conditions.
Abstract:We study self-rewarding reasoning large language models (LLMs), which can simultaneously generate step-by-step reasoning and evaluate the correctness of their outputs during the inference time-without external feedback. This integrated approach allows a single model to independently guide its reasoning process, offering computational advantages for model deployment. We particularly focus on the representative task of self-correction, where models autonomously detect errors in their responses, revise outputs, and decide when to terminate iterative refinement loops. To enable this, we propose a two-staged algorithmic framework for constructing self-rewarding reasoning models using only self-generated data. In the first stage, we employ sequential rejection sampling to synthesize long chain-of-thought trajectories that incorporate both self-rewarding and self-correction mechanisms. Fine-tuning models on these curated data allows them to learn the patterns of self-rewarding and self-correction. In the second stage, we further enhance the models' ability to assess response accuracy and refine outputs through reinforcement learning with rule-based signals. Experiments with Llama-3 and Qwen-2.5 demonstrate that our approach surpasses intrinsic self-correction capabilities and achieves performance comparable to systems that rely on external reward models.
Abstract:Learning complex distributions is a fundamental challenge in contemporary applications. Generative models, such as diffusion models, have demonstrated remarkable success in overcoming many limitations of traditional statistical methods. Shen and Meinshausen (2024) introduced engression, a generative approach based on scoring rules that maps noise (and covariates, if available) directly to data. While effective, engression struggles with highly complex distributions, such as those encountered in image data. In this work, we extend engression to improve its capability in learning complex distributions. We propose a framework that defines a general forward process transitioning from the target distribution to a known distribution (e.g., Gaussian) and then learns a reverse Markov process using multiple engression models. This reverse process reconstructs the target distribution step by step. Our approach supports general forward processes, allows for dimension reduction, and naturally discretizes the generative process. As a special case, when using a diffusion-based forward process, our framework offers a method to discretize the training and inference of diffusion models efficiently. Empirical evaluations on simulated and climate data validate our theoretical insights, demonstrating the effectiveness of our approach in capturing complex distributions.
Abstract:Leveraging Multi-modal Large Language Models (MLLMs) to create embodied agents offers a promising avenue for tackling real-world tasks. While language-centric embodied agents have garnered substantial attention, MLLM-based embodied agents remain underexplored due to the lack of comprehensive evaluation frameworks. To bridge this gap, we introduce EmbodiedBench, an extensive benchmark designed to evaluate vision-driven embodied agents. EmbodiedBench features: (1) a diverse set of 1,128 testing tasks across four environments, ranging from high-level semantic tasks (e.g., household) to low-level tasks involving atomic actions (e.g., navigation and manipulation); and (2) six meticulously curated subsets evaluating essential agent capabilities like commonsense reasoning, complex instruction understanding, spatial awareness, visual perception, and long-term planning. Through extensive experiments, we evaluated 13 leading proprietary and open-source MLLMs within EmbodiedBench. Our findings reveal that: MLLMs excel at high-level tasks but struggle with low-level manipulation, with the best model, GPT-4o, scoring only 28.9% on average. EmbodiedBench provides a multifaceted standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance MLLM-based embodied agents. Our code is available at https://embodiedbench.github.io.
Abstract:Recent advances in Reinforcement Learning from Human Feedback (RLHF) have shown that KL-regularization plays a pivotal role in improving the efficiency of RL fine-tuning for large language models (LLMs). Despite its empirical advantage, the theoretical difference between KL-regularized RL and standard RL remains largely under-explored. While there is a recent line of work on the theoretical analysis of KL-regularized objective in decision making \citep{xiong2024iterative, xie2024exploratory,zhao2024sharp}, these analyses either reduce to the traditional RL setting or rely on strong coverage assumptions. In this paper, we propose an optimism-based KL-regularized online contextual bandit algorithm, and provide a novel analysis of its regret. By carefully leveraging the benign optimization landscape induced by the KL-regularization and the optimistic reward estimation, our algorithm achieves an $\mathcal{O}\big(\eta\log (N_{\mathcal R} T)\cdot d_{\mathcal R}\big)$ logarithmic regret bound, where $\eta, N_{\mathcal R},T,d_{\mathcal R}$ denote the KL-regularization parameter, the cardinality of the reward function class, number of rounds, and the complexity of the reward function class. Furthermore, we extend our algorithm and analysis to reinforcement learning by developing a novel decomposition over transition steps and also obtain a similar logarithmic regret bound.
Abstract:The rise of large language models has opened new avenues for users seeking legal advice. However, users often lack professional legal knowledge, which can lead to questions that omit critical information. This deficiency makes it challenging for traditional legal question-answering systems to accurately identify users' actual needs, often resulting in imprecise or generalized advice. In this work, we develop a legal question-answering system called Intelligent Legal Assistant, which interacts with users to precisely capture their needs. When a user poses a question, the system requests that the user select their geographical location to pinpoint the applicable laws. It then generates clarifying questions and options based on the key information missing from the user's initial question. This allows the user to select and provide the necessary details. Once all necessary information is provided, the system produces an in-depth legal analysis encompassing three aspects: overall conclusion, jurisprudential analysis, and resolution suggestions.
Abstract:This study uses deep-learning models to predict city partition crime counts on specific days. It helps police enhance surveillance, gather intelligence, and proactively prevent crimes. We formulate crime count prediction as a spatiotemporal sequence challenge, where both input data and prediction targets are spatiotemporal sequences. In order to improve the accuracy of crime forecasting, we introduce a new model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. We conducted a comparative analysis to access the effects of various data sequences, including raw and binned data, on the prediction errors of four deep learning forecasting models. Directly inputting raw crime data into the forecasting model causes high prediction errors, making the model unsuitable for real - world use. The findings indicate that the proposed CNN-LSTM model achieves optimal performance when crime data is categorized into 10 or 5 groups. Data binning can enhance forecasting model performance, but poorly defined intervals may reduce map granularity. Compared to dividing into 5 bins, binning into 10 intervals strikes an optimal balance, preserving data characteristics and surpassing raw data in predictive modelling efficacy.
Abstract:Large transformer models are known to produce high-norm tokens. In vision transformers (ViTs), such tokens have been mathematically modeled through the singular vectors of the linear approximations of layers. However, in large language models (LLMs), the underlying causes of high-norm tokens remain largely unexplored, and their different properties from those of ViTs require a new analysis framework. In this paper, we provide both theoretical insights and empirical validation across a range of recent models, leading to the following observations: i) The layer-wise singular direction predicts the abrupt explosion of token norms in LLMs. ii) The negative eigenvalues of a layer explain its sudden decay. iii) The computational pathways leading to high-norm tokens differ between initial and noninitial tokens. iv) High-norm tokens are triggered by the right leading singular vector of the matrix approximating the corresponding modules. We showcase two practical applications of these findings: the improvement of quantization schemes and the design of LLM signatures. Our findings not only advance the understanding of singular defects in LLMs but also open new avenues for their application. We expect that this work will stimulate further research into the internal mechanisms of LLMs and will therefore publicly release our code.
Abstract:KL-regularized policy optimization has become a workhorse in learning-based decision making, while its theoretical understanding is still very limited. Although recent progress has been made towards settling the sample complexity of KL-regularized contextual bandits, existing sample complexity bounds are either $\tilde{O}(\epsilon^{-2})$ under single-policy concentrability or $\tilde{O}(\epsilon^{-1})$ under all-policy concentrability. In this paper, we propose the \emph{first} algorithm with $\tilde{O}(\epsilon^{-1})$ sample complexity under single-policy concentrability for offline contextual bandits. Our algorithm is designed for general function approximation and based on the principle of \emph{pessimism in the face of uncertainty}. The core of our proof leverages the strong convexity of the KL regularization, and the conditional non-negativity of the gap between the true reward and its pessimistic estimator to refine a mean-value-type risk upper bound to its extreme. This in turn leads to a novel covariance-based analysis, effectively bypassing the need for uniform control over the discrepancy between any two functions in the function class. The near-optimality of our algorithm is demonstrated by an $\tilde{\Omega}(\epsilon^{-1})$ lower bound. Furthermore, we extend our algorithm to contextual dueling bandits and achieve a similar nearly optimal sample complexity.