Abstract:In frequency division duplex (FDD) massive MIMO systems, a major challenge lies in acquiring the downlink channel state information}\ (CSI) at the base station (BS) from limited feedback sent by the user equipment (UE). To tackle this fundamental task, our contribution is twofold: First, a simple feedback framework is proposed, where a compression and Gaussian dithering-based quantization strategy is adopted at the UE side, and then a maximum likelihood estimator (MLE) is formulated at the BS side. Recoverability of the MIMO channel under the widely used double directional model is established. Specifically, analyses are presented for two compression schemes -- showing one being more overhead-economical and the other computationally lighter at the UE side. Second, to realize the MLE, an alternating direction method of multipliers (ADMM) algorithm is proposed. The algorithm is carefully designed to integrate a sophisticated harmonic retrieval (HR) solver as subroutine, which turns out to be the key of effectively tackling this hard MLE problem.Extensive numerical experiments are conducted to validate the efficacy of our approach.
Abstract:Language-queried target sound extraction (TSE) aims to extract specific sounds from mixtures based on language queries. Traditional fully-supervised training schemes require extensively annotated parallel audio-text data, which are labor-intensive. We introduce a language-free training scheme, requiring only unlabelled audio clips for TSE model training by utilizing the multi-modal representation alignment nature of the contrastive language-audio pre-trained model (CLAP). In a vanilla language-free training stage, target audio is encoded using the pre-trained CLAP audio encoder to form a condition embedding for the TSE model, while during inference, user language queries are encoded by CLAP text encoder. This straightforward approach faces challenges due to the modality gap between training and inference queries and information leakage from direct exposure to target audio during training. To address this, we propose a retrieval-augmented strategy. Specifically, we create an embedding cache using audio captions generated by a large language model (LLM). During training, target audio embeddings retrieve text embeddings from this cache to use as condition embeddings, ensuring consistent modalities between training and inference and eliminating information leakage. Extensive experiment results show that our retrieval-augmented approach achieves consistent and notable performance improvements over existing state-of-the-art with better generalizability.
Abstract:As communication systems advance towards the future 6G era, the incorporation of large-scale antenna arrays in base stations (BSs) presents challenges such as increased hardware costs and energy consumption. To address these issues, the use of one-bit analog-to-digital converters (ADCs)/digital-to-analog converters (DACs) has gained significant attentions. This paper focuses on one-bit multiple-input multiple-output (MIMO) detection in an uplink multiuser transmission scenario where the BS employs one-bit ADCs. One-bit quantization retains only the sign information and loses the amplitude information, which poses a unique challenge in the corresponding detection problem. The maximum-likelihood (ML) formulation of one-bit MIMO detection has a challenging likelihood function that hinders the application of many high-performance detectors developed for classic MIMO detection (under high-resolution ADCs). While many approximate methods for the ML detection problem have been studied, it lacks an efficient global algorithm. This paper fills this gap by proposing an efficient branch-and-bound algorithm, which is guaranteed to find the global solution of the one-bit ML MIMO detection problem. Additionally, a new amplitude retrieval (AR) detection approach is developed, incorporating explicit amplitude variables into the problem formulation. The AR approach yields simpler objective functions that enable the development of efficient algorithms offering both global and approximate solutions. The paper also contributes to the computational complexity analysis of both ML and AR detection problems. Extensive simulations are conducted to demonstrate the effectiveness and efficiency of the proposed formulations and algorithms.
Abstract:In this letter, we investigate the fluid antenna (FA)-assisted integrated sensing and communication (ISAC) system, where communication and radar sensing employ the co-waveform design. Specifically, we focus on the beamformer design and antenna position configuration to realize a higher communication rate while guaranteeing the minimum radar probing power. Different from existing beamformer algorithms, we propose an efficient proximal distance algorithm (PDA) to solve the multiuser sum-rate maximization problem with radar sensing constraint to obtain the closed-form beamforming vector. In addition, we develop an extrapolated projected gradient (EPG) algorithm to obtain a better antenna location configuration for FA to enhance the ISAC performance. Numerical results show that the considered FA-assisted ISAC system enjoys a higher sum-rate by the proposed algorithm, compared with that in existing non-FA ISAC systems.
Abstract:In the first part of this study, a convex-constrained penalized formulation was studied for a class of constant modulus (CM) problems. In particular, the error bound techniques were shown to play a vital role in providing exact penalization results. In this second part of the study, we continue our error bound analysis for the cases of partial permutation matrices, size-constrained assignment matrices and non-negative semi-orthogonal matrices. We develop new error bounds and penalized formulations for these three cases, and the new formulations possess good structures for building computationally efficient algorithms. Moreover, we provide numerical results to demonstrate our framework in a variety of applications such as the densest k-subgraph problem, graph matching, size-constrained clustering, non-negative orthogonal matrix factorization and sparse fair principal component analysis.
Abstract:This study develops a framework for a class of constant modulus (CM) optimization problems, which covers binary constraints, discrete phase constraints, semi-orthogonal matrix constraints, non-negative semi-orthogonal matrix constraints, and several types of binary assignment constraints. Capitalizing on the basic principles of concave minimization and error bounds, we study a convex-constrained penalized formulation for general CM problems. The advantage of such formulation is that it allows us to leverage non-convex optimization techniques, such as the simple projected gradient method, to build algorithms. As the first part of this study, we explore the theory of this framework. We study conditions under which the formulation provides exact penalization results. We also examine computational aspects relating to the use of the projected gradient method for each type of CM constraint. Our study suggests that the proposed framework has a broad scope of applicability.
Abstract:Universal sound separation (USS) aims to extract arbitrary types of sounds from real-world sound recordings. Language-queried target sound extraction (TSE) is an effective approach to achieving USS. Such systems consist of two components: a query network that converts user queries into conditional embeddings, and a separation network that extracts the target sound based on conditional embeddings. Existing methods mainly suffer from two issues: firstly, they require training a randomly initialized model from scratch, lacking the utilization of pre-trained models, and substantial data and computational resources are needed to ensure model convergence; secondly, existing methods need to jointly train a query network and a separation network, which tends to lead to overfitting. To address these issues, we build the CLAPSep model based on contrastive language-audio pre-trained model (CLAP). We achieve this by using a pre-trained text encoder of CLAP as the query network and introducing pre-trained audio encoder weights of CLAP into the separation network to fully utilize the prior knowledge embedded in the pre-trained model to assist in target sound extraction tasks. Extensive experimental results demonstrate that the proposed method saves training resources while ensuring the model's performance and generalizability. Additionally, we explore the model's ability to comprehensively utilize language/audio multi-modal and positive/negative multi-valent user queries, enhancing system performance while providing diversified application modes.
Abstract:Active reconfigurable intelligent surface (RIS) is a new RIS architecture that can reflect and amplify communication signals. It can provide enhanced performance gain compared to the conventional passive RIS systems that can only reflect the signals. On the other hand, the design problem of active RIS-aided systems is more challenging than the passive RIS-aided systems and its efficient algorithms are less studied. In this paper, we consider the sum rate maximization problem in the multiuser massive multiple-input single-output (MISO) downlink with the aid of a large-scale active RIS. Existing approaches usually resort to general optimization solvers and can be computationally prohibitive in the considered settings. We propose an efficient block successive upper bound minimization (BSUM) method, of which each step has a (semi) closed-form update. Thus, the proposed algorithm has an attractive low per-iteration complexity. By simulation, our proposed algorithm consumes much less computation than the existing approaches. In particular, when the MIMO and/or RIS sizes are large, our proposed algorithm can be orders-of-magnitude faster than existing approaches.
Abstract:Target-speaker automatic speech recognition (ASR) aims to transcribe the desired speech of a target speaker from multi-talker overlapped utterances. Most of the existing target-speaker ASR (TS-ASR) methods involve either training from scratch or fully fine-tuning a pre-trained model, leading to significant training costs and becoming inapplicable to large foundation models. This work leverages prompt tuning, a parameter-efficient fine-tuning approach, to extend Whisper, a large-scale single-talker ASR model, to TS-ASR. Experimental results show that prompt tuning can achieve performance comparable to state-of-the-art full fine-tuning approaches while only requiring about 1% of task-specific model parameters. Notably, the original Whisper's features, such as inverse text normalization and timestamp prediction, are retained in target-speaker ASR, keeping the generated transcriptions natural and informative.
Abstract:In massive multiple-input multiple-output (MIMO) downlink systems, the physical implementation of the base stations (BSs) requires the use of cheap and power-efficient power amplifiers (PAs) to avoid high hardware cost and high power consumption. However, such PAs usually have limited linear amplification ranges. Nonlinear distortions arising from operation beyond the linear amplification ranges can significantly degrade system performance. Existing approaches to handle the nonlinear distortions, such as digital predistortion (DPD), typically require accurate knowledge, or acquisition, of the PA transfer function. In this paper, we present a new concept for mitigation of the PA distortions. Assuming a uniform linear array (ULA) at the BS, the idea is to apply a Sigma-Delta ($\Sigma \Delta$) modulator to spatially shape the PA distortions to the high-angle region. By having the system operating in the low-angle region, the received signals are less affected by the PA distortions. To demonstrate the potential of this spatial $\Sigma \Delta$ approach, we study the application of our approach to the multi-user MIMO-orthogonal frequency division modulation (OFDM) downlink scenario. A symbol-level precoding (SLP) scheme and a zero-forcing (ZF) precoding scheme, with the new design requirement by the spatial $\Sigma \Delta$ approach being taken into account, are developed. Numerical simulations are performed to show the effectiveness of the developed $\Sigma \Delta$ precoding schemes.