Abstract:This paper studies the device activity detection problem in a massive multiple-input multiple-output (MIMO) system for near-field communications (NFC). In this system, active devices transmit their signature sequences to the base station (BS), which detects the active devices based on the received signal. In this paper, we model the near-field channels as correlated Rician fading channels and formulate the device activity detection problem as a maximum likelihood estimation (MLE) problem. Compared to the traditional uncorrelated channel model, the correlation of channels complicates both algorithm design and theoretical analysis of the MLE problem. On the algorithmic side, we propose two computationally efficient algorithms for solving the MLE problem: an exact coordinate descent (CD) algorithm and an inexact CD algorithm. The exact CD algorithm solves the one-dimensional optimization subproblem exactly using matrix eigenvalue decomposition and polynomial root-finding. By approximating the objective function appropriately, the inexact CD algorithm solves the one-dimensional optimization subproblem inexactly with lower complexity and more robust numerical performance. Additionally, we analyze the detection performance of the MLE problem under correlated channels by comparing it with the case of uncorrelated channels. The analysis shows that when the overall number of devices $N$ is large or the signature sequence length $L$ is small, the detection performance of MLE under correlated channels tends to be better than that under uncorrelated channels. Conversely, when $N$ is small or $L$ is large, MLE performs better under uncorrelated channels than under correlated ones. Simulation results demonstrate the computational efficiency of the proposed algorithms and verify the correctness of the analysis.
Abstract:In this paper, we consider a class of convex programming problems with linear equality constraints, which finds broad applications in machine learning and signal processing. We propose a new adaptive balanced augmented Lagrangian (ABAL) method for solving these problems. The proposed ABAL method adaptively selects the stepsize parameter and enjoys a low per-iteration complexity, involving only the computation of a proximal mapping of the objective function and the solution of a linear equation. These features make the proposed method well-suited to large-scale problems. We then custom-apply the ABAL method to solve the ISAC beamforming design problem, which is formulated as a nonlinear semidefinite program in a previous work. This customized application requires careful exploitation of the problem's special structure such as the property that all of its signal-to-interference-and-noise-ratio (SINR) constraints hold with equality at the solution and an efficient computation of the proximal mapping of the objective function. Simulation results demonstrate the efficiency of the proposed ABAL method.
Abstract:In this paper, we consider the network slicing (NS) problem which attempts to map multiple customized virtual network requests (also called services) to a common shared network infrastructure and manage network resources to meet diverse quality of service (QoS) requirements. We propose a mixed-integer nonlinear programming (MINLP) formulation for the considered NS problem that can flexibly route the traffic flow of the services on multiple paths and provide end-to-end delay and reliability guarantees for all services. To overcome the computational difficulty due to the intrinsic nonlinearity in the MINLP formulation, we transform the MINLP formulation into an equivalent mixed-integer linear programming (MILP) formulation and further show that their continuous relaxations are equivalent. In sharp contrast to the continuous relaxation of the MINLP formulation which is a nonconvex nonlinear programming problem, the continuous relaxation of the MILP formulation is a polynomial-time solvable linear programming problem, which significantly facilitates the algorithmic design. Based on the newly proposed MILP formulation, we develop a customized column generation (cCG) algorithm for solving the NS problem. The proposed cCG algorithm is a decomposition-based algorithm and is particularly suitable for solving large-scale NS problems. Numerical results demonstrate the efficacy of the proposed formulations and the proposed cCG algorithm.
Abstract:Consider an integrated sensing and communication (ISAC) system where a base station (BS) employs a full-duplex radio to simultaneously serve multiple users and detect a target. The detection performance of the BS may be compromised by self-interference (SI) leakage. This paper investigates the feasibility of SI cancellation (SIC) through the application of symbol-level precoding (SLP). We first derive the target detection probability in the presence of the SI. We then formulate an SLP-based SIC problem, which optimizes the target detection probability while satisfying the quality of service requirements of all users. The formulated problem is a nonconvex fractional programming (FP) problem with a large number of equality and inequality constraints. We propose a penalty-based block coordinate descent (BCD) algorithm for solving the formulated problem, which allows for efficient closed-form updates of each block of variables at each iteration. Finally, numerical simulation results are presented to showcase the enhanced detection performance of the proposed SIC approach.
Abstract:Intelligent reflecting surface (IRS) is an emerging technology to enhance spatial multiplexing in wireless networks. This letter considers the discrete passive beamforming design for IRS in order to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among multiple users in an IRS-assisted downlink network. The main design difficulty lies in the discrete phase-shift constraint. Differing from most existing works, this letter advocates a convex-hull relaxation of the discrete constraints which leads to a continuous reformulated problem equivalent to the original discrete problem. This letter further proposes an efficient alternating projection/proximal gradient descent and ascent algorithm for solving the reformulated problem. Simulation results show that the proposed algorithm outperforms the state-of-the-art methods significantly.
Abstract:As communication systems advance towards the future 6G era, the incorporation of large-scale antenna arrays in base stations (BSs) presents challenges such as increased hardware costs and energy consumption. To address these issues, the use of one-bit analog-to-digital converters (ADCs)/digital-to-analog converters (DACs) has gained significant attentions. This paper focuses on one-bit multiple-input multiple-output (MIMO) detection in an uplink multiuser transmission scenario where the BS employs one-bit ADCs. One-bit quantization retains only the sign information and loses the amplitude information, which poses a unique challenge in the corresponding detection problem. The maximum-likelihood (ML) formulation of one-bit MIMO detection has a challenging likelihood function that hinders the application of many high-performance detectors developed for classic MIMO detection (under high-resolution ADCs). While many approximate methods for the ML detection problem have been studied, it lacks an efficient global algorithm. This paper fills this gap by proposing an efficient branch-and-bound algorithm, which is guaranteed to find the global solution of the one-bit ML MIMO detection problem. Additionally, a new amplitude retrieval (AR) detection approach is developed, incorporating explicit amplitude variables into the problem formulation. The AR approach yields simpler objective functions that enable the development of efficient algorithms offering both global and approximate solutions. The paper also contributes to the computational complexity analysis of both ML and AR detection problems. Extensive simulations are conducted to demonstrate the effectiveness and efficiency of the proposed formulations and algorithms.
Abstract:This paper revisits the identity detection problem under the current grant-free protocol in massive machine-type communications (mMTC) by asking the following question: for stable identity detection performance, is it enough to permit active devices to transmit preambles without any handshaking with the base station (BS)? Specifically, in the current grant-free protocol, the BS blindly allocates a fixed length of preamble to devices for identity detection as it lacks the prior information on the number of active devices $K$. However, in practice, $K$ varies dynamically over time, resulting in degraded identity detection performance especially when $K$ is large. Consequently, the current grant-free protocol fails to ensure stable identity detection performance. To address this issue, we propose a two-stage communication protocol which consists of estimation of $K$ in Phase I and detection of identities of active devices in Phase II. The preamble length for identity detection in Phase II is dynamically allocated based on the estimated $K$ in Phase I through a table lookup manner such that the identity detection performance could always be better than a predefined threshold. In addition, we design an algorithm for estimating $K$ in Phase I, and exploit the estimated $K$ to reduce the computational complexity of the identity detector in Phase II. Numerical results demonstrate the effectiveness of the proposed two-stage communication protocol and algorithms.
Abstract:Both dual-functional radar-communication (DFRC) and massive multiple-input multiple-output (MIMO) have been recognized as enabling technologies for 6G wireless networks. This paper considers the advanced waveform design for hardware-efficient massive MIMO DFRC systems. Specifically, the transmit waveform is imposed with the quantized constant-envelope (QCE) constraint, which facilitates the employment of low-resolution digital-to-analog converters (DACs) and power-efficient amplifiers. The waveform design problem is formulated as the minimization of the mean square error (MSE) between the designed and desired beampatterns subject to the constructive interference (CI)-based communication quality of service (QoS) constraints and the QCE constraint. To solve the formulated problem, we first utilize the penalty technique to transform the discrete problem into an equivalent continuous penalty model. Then, we propose an inexact augmented Lagrangian method (ALM) algorithm for solving the penalty model. In particular, the ALM subproblem at each iteration is solved by a custom-built block successive upper-bound minimization (BSUM) algorithm, which admits closed-form updates, making the proposed inexact ALM algorithm computationally efficient. Simulation results demonstrate the superiority of the proposed approach over existing state-of-the-art ones. In addition, extensive simulations are conducted to examine the impact of various system parameters on the trade-off between communication and radar performances.
Abstract:This paper studies the quality-of-service (QoS) constrained multi-group multicast beamforming design problem, where each multicast group is composed of a number of users requiring the same content. Due to the nonconvex QoS constraints, this problem is nonconvex and NP-hard. While existing optimization-based iterative algorithms can obtain a suboptimal solution, their iterative nature results in large computational complexity and delay. To facilitate real-time implementations, this paper proposes a deep learning-based approach, which consists of a beamforming structure assisted problem transformation and a customized neural network architecture named hierarchical permutation equivariance (HPE) transformer. The proposed HPE transformer is proved to be permutation equivariant with respect to the users within each multicast group, and also permutation equivariant with respect to different multicast groups. Simulation results demonstrate that the proposed HPE transformer outperforms state-of-the-art optimization-based and deep learning-based approaches for multi-group multicast beamforming design in terms of the total transmit power, the constraint violation, and the computational time. In addition, the proposed HPE transformer achieves pretty good generalization performance on different numbers of users, different numbers of multicast groups, and different signal-to-interference-plus-noise ratio targets.
Abstract:Mathematical optimization is now widely regarded as an indispensable modeling and solution tool for the design of wireless communications systems. While optimization has played a significant role in the revolutionary progress in wireless communication and networking technologies from 1G to 5G and onto the future 6G, the innovations in wireless technologies have also substantially transformed the nature of the underlying mathematical optimization problems upon which the system designs are based and have sparked significant innovations in the development of methodologies to understand, to analyze, and to solve those problems. In this paper, we provide a comprehensive survey of recent advances in mathematical optimization theory and algorithms for wireless communication system design. We begin by illustrating common features of mathematical optimization problems arising in wireless communication system design. We discuss various scenarios and use cases and their associated mathematical structures from an optimization perspective. We then provide an overview of recent advances in mathematical optimization theory and algorithms, from nonconvex optimization, global optimization, and integer programming, to distributed optimization and learning-based optimization. The key to successful solution of mathematical optimization problems is in carefully choosing and/or developing suitable optimization algorithms (or neural network architectures) that can exploit the underlying problem structure. We conclude the paper by identifying several open research challenges and outlining future research directions.