Abstract:The key technologies of sixth generation (6G), such as ultra-massive multiple-input multiple-output (MIMO), enable intricate interactions between antennas and wireless propagation environments. As a result, it becomes necessary to develop joint models that encompass both antennas and wireless propagation channels. To achieve this, we utilize the multi-port communication theory, which considers impedance matching among the source, transmission medium, and load to facilitate efficient power transfer. Specifically, we first investigate the impact of insertion loss, mutual coupling, and other factors on the performance of multi-port matching networks. Next, to further improve system performance, we explore two important deep unfolding designs for the multi-port matching networks: beamforming and power control, respectively. For the hybrid beamforming, we develop a deep unfolding framework, i.e., projected gradient descent (PGD)-Net based on unfolding projected gradient descent. For the power control, we design a deep unfolding network, graph neural network (GNN) aided alternating optimization (AO)Net, which considers the interaction between different ports in optimizing power allocation. Numerical results verify the necessity of considering insertion loss in the dynamic metasurface antenna (DMA) performance analysis. Besides, the proposed PGD-Net based hybrid beamforming approaches approximate the conventional model-based algorithm with very low complexity. Moreover, our proposed power control scheme has a fast run time compared to the traditional weighted minimum mean squared error (WMMSE) method.
Abstract:Street Scene Semantic Understanding (denoted as TriSU) is a complex task for autonomous driving (AD). However, inference model trained from data in a particular geographical region faces poor generalization when applied in other regions due to inter-city data domain-shift. Hierarchical Federated Learning (HFL) offers a potential solution for improving TriSU model generalization by collaborative privacy-preserving training over distributed datasets from different cities. Unfortunately, it suffers from slow convergence because data from different cities are with disparate statistical properties. Going beyond existing HFL methods, we propose a Gaussian heterogeneous HFL algorithm (FedGau) to address inter-city data heterogeneity so that convergence can be accelerated. In the proposed FedGau algorithm, both single RGB image and RGB dataset are modelled as Gaussian distributions for aggregation weight design. This approach not only differentiates each RGB image by respective statistical distribution, but also exploits the statistics of dataset from each city in addition to the conventionally considered data volume. With the proposed approach, the convergence is accelerated by 35.5\%-40.6\% compared to existing state-of-the-art (SOTA) HFL methods. On the other hand, to reduce the involved communication resource, we further introduce a novel performance-aware adaptive resource scheduling (AdapRS) policy. Unlike the traditional static resource scheduling policy that exchanges a fixed number of models between two adjacent aggregations, AdapRS adjusts the number of model aggregation at different levels of HFL so that unnecessary communications are minimized. Extensive experiments demonstrate that AdapRS saves 29.65\% communication overhead compared to conventional static resource scheduling policy while maintaining almost the same performance.
Abstract:The movable antenna (MA) is a promising technology to exploit more spatial degrees of freedom for enhancing wireless system performance. However, the MA-aided system introduces the non-convex antenna distance constraints, which poses challenges in the underlying optimization problems. To fill this gap, this paper proposes a general framework for optimizing the MA-aided system under the antenna distance constraints. Specifically, we separate the non-convex antenna distance constraints from the objective function by introducing auxiliary variables. Then, the resulting problem can be efficiently solved under the alternating optimization framework. For the subproblems with respect to the antenna position variables and auxiliary variables, the proposed algorithms are able to obtain at least stationary points without any approximations. To verify the effectiveness of the proposed optimization framework, we present two case studies: capacity maximization and regularized zero-forcing precoding. Simulation results demonstrate the proposed optimization framework outperforms the existing baseline schemes under both cases.
Abstract:Street Scene Semantic Understanding (denoted as TriSU) is a crucial but complex task for world-wide distributed autonomous driving (AD) vehicles (e.g., Tesla). Its inference model faces poor generalization issue due to inter-city domain-shift. Hierarchical Federated Learning (HFL) offers a potential solution for improving TriSU model generalization, but suffers from slow convergence rate because of vehicles' surrounding heterogeneity across cities. Going beyond existing HFL works that have deficient capabilities in complex tasks, we propose a rapid-converged heterogeneous HFL framework (FedRC) to address the inter-city data heterogeneity and accelerate HFL model convergence rate. In our proposed FedRC framework, both single RGB image and RGB dataset are modelled as Gaussian distributions in HFL aggregation weight design. This approach not only differentiates each RGB sample instead of typically equalizing them, but also considers both data volume and statistical properties rather than simply taking data quantity into consideration. Extensive experiments on the TriSU task using across-city datasets demonstrate that FedRC converges faster than the state-of-the-art benchmark by 38.7%, 37.5%, 35.5%, and 40.6% in terms of mIoU, mPrecision, mRecall, and mF1, respectively. Furthermore, qualitative evaluations in the CARLA simulation environment confirm that the proposed FedRC framework delivers top-tier performance.
Abstract:Deep learning-based Autonomous Driving (AD) models often exhibit poor generalization due to data heterogeneity in an ever domain-shifting environment. While Federated Learning (FL) could improve the generalization of an AD model (known as FedAD system), conventional models often struggle with under-fitting as the amount of accumulated training data progressively increases. To address this issue, instead of conventional small models, employing Large Vision Models (LVMs) in FedAD is a viable option for better learning of representations from a vast volume of data. However, implementing LVMs in FedAD introduces three challenges: (I) the extremely high communication overheads associated with transmitting LVMs between participating vehicles and a central server; (II) lack of computing resource to deploy LVMs on each vehicle; (III) the performance drop due to LVM focusing on shared features but overlooking local vehicle characteristics. To overcome these challenges, we propose pFedLVM, a LVM-Driven, Latent Feature-Based Personalized Federated Learning framework. In this approach, the LVM is deployed only on central server, which effectively alleviates the computational burden on individual vehicles. Furthermore, the exchange between central server and vehicles are the learned features rather than the LVM parameters, which significantly reduces communication overhead. In addition, we utilize both shared features from all participating vehicles and individual characteristics from each vehicle to establish a personalized learning mechanism. This enables each vehicle's model to learn features from others while preserving its personalized characteristics, thereby outperforming globally shared models trained in general FL. Extensive experiments demonstrate that pFedLVM outperforms the existing state-of-the-art approaches.
Abstract:Activity detection is an important task in the next generation grant-free multiple access. While there are a number of existing algorithms designed for this purpose, they mostly require precise information about the network, such as large-scale fading coefficients, small-scale fading channel statistics, noise variance at the access points, and user activity probability. Acquiring these information would take a significant overhead and their estimated values might not be accurate. This problem is even more severe in cell-free networks as there are many of these parameters to be acquired. Therefore, this paper sets out to investigate the activity detection problem without the above-mentioned information. In order to handle so many unknown parameters, this paper employs the Bayesian approach, where the unknown variables are endowed with prior distributions which effectively act as regularizations. Together with the likelihood function, a maximum a posteriori (MAP) estimator and a variational inference algorithm are derived. Extensive simulations demonstrate that the proposed methods, even without the knowledge of these system parameters, perform better than existing state-of-the-art methods, such as covariance-based and approximate message passing methods.
Abstract:Device activity detection in the emerging cell-free massive multiple-input multiple-output (MIMO) systems has been recognized as a crucial task in machine-type communications, in which multiple access points (APs) jointly identify the active devices from a large number of potential devices based on the received signals. Most of the existing works addressing this problem rely on the impractical assumption that different active devices transmit signals synchronously. However, in practice, synchronization cannot be guaranteed due to the low-cost oscillators, which brings additional discontinuous and nonconvex constraints to the detection problem. To address this challenge, this paper reveals an equivalent reformulation to the asynchronous activity detection problem, which facilitates the development of a centralized algorithm and a distributed algorithm that satisfy the highly nonconvex constraints in a gentle fashion as the iteration number increases, so that the sequence generated by the proposed algorithms can get around bad stationary points. To reduce the capacity requirements of the fronthauls, we further design a communication-efficient accelerated distributed algorithm. Simulation results demonstrate that the proposed centralized and distributed algorithms outperform state-of-the-art approaches, and the proposed accelerated distributed algorithm achieves a close detection performance to that of the centralized algorithm but with a much smaller number of bits to be transmitted on the fronthaul links.
Abstract:Reconfigurable intelligent surfaces (RISs) have a revolutionary capability to customize the radio propagation environment for wireless networks. To fully exploit the advantages of RISs in wireless systems, the phases of the reflecting elements must be jointly designed with conventional communication resources, such as beamformers, transmit power, and computation time. However, due to the unique constraints on the phase shift, and massive numbers of reflecting units and users in large-scale networks, the resulting optimization problems are challenging to solve. This paper provides a review of current optimization methods and artificial intelligence-based methods for handling the constraints imposed by RIS and compares them in terms of solution quality and computational complexity. Future challenges in phase shift optimization involving RISs are also described and potential solutions are discussed.