Abstract:Resource limitations often constrain the parameter counts of Large Language Models (LLMs), hindering their performance. While existing methods employ parameter sharing to reuse the same parameter set under fixed budgets, such approaches typically force each layer to assume multiple roles with a predetermined number of iterations, restricting efficiency and adaptability. In this work, we propose the Zero Token Transformer (ZTT), which features a head-tail decoupled parameter cycling method. We disentangle the first (head) and last (tail) layers from parameter cycling and iteratively refine only the intermediate layers. Furthermore, we introduce a Zero-Token Mechanism, an internal architectural component rather than an input token, to guide layer-specific computation. At each cycle, the model retrieves a zero token (with trainable key values) from a Zero-Token Pool, integrating it alongside regular tokens in the attention mechanism. The corresponding attention scores not only reflect each layer's computational importance but also enable dynamic early exits without sacrificing overall model accuracy. Our approach achieves superior performance under tight parameter budgets, effectively reduces computational overhead via early exits, and can be readily applied to fine-tune existing pre-trained models for enhanced efficiency and adaptability.
Abstract:Outliers have been widely observed in Large Language Models (LLMs), significantly impacting model performance and posing challenges for model compression. Understanding the functionality and formation mechanisms of these outliers is critically important. Existing works, however, largely focus on reducing the impact of outliers from an algorithmic perspective, lacking an in-depth investigation into their causes and roles. In this work, we provide a detailed analysis of the formation process, underlying causes, and functions of outliers in LLMs. We define and categorize three types of outliers-activation outliers, weight outliers, and attention outliers-and analyze their distributions across different dimensions, uncovering inherent connections between their occurrences and their ultimate influence on the attention mechanism. Based on these observations, we hypothesize and explore the mechanisms by which these outliers arise and function, demonstrating through theoretical derivations and experiments that they emerge due to the self-attention mechanism's softmax operation. These outliers act as implicit context-aware scaling factors within the attention mechanism. As these outliers stem from systematic influences, we term them systematic outliers. Our study not only enhances the understanding of Transformer-based LLMs but also shows that structurally eliminating outliers can accelerate convergence and improve model compression. The code is avilable at https://github.com/an-yongqi/systematic-outliers.
Abstract:Learning-based street scene semantic understanding in autonomous driving (AD) has advanced significantly recently, but the performance of the AD model is heavily dependent on the quantity and quality of the annotated training data. However, traditional manual labeling involves high cost to annotate the vast amount of required data for training robust model. To mitigate this cost of manual labeling, we propose a Label Anything Model (denoted as LAM), serving as an interpretable, high-fidelity, and prompt-free data annotator. Specifically, we firstly incorporate a pretrained Vision Transformer (ViT) to extract the latent features. On top of ViT, we propose a semantic class adapter (SCA) and an optimization-oriented unrolling algorithm (OptOU), both with a quite small number of trainable parameters. SCA is proposed to fuse ViT-extracted features to consolidate the basis of the subsequent automatic annotation. OptOU consists of multiple cascading layers and each layer contains an optimization formulation to align its output with the ground truth as closely as possible, though which OptOU acts as being interpretable rather than learning-based blackbox nature. In addition, training SCA and OptOU requires only a single pre-annotated RGB seed image, owing to their small volume of learnable parameters. Extensive experiments clearly demonstrate that the proposed LAM can generate high-fidelity annotations (almost 100% in mIoU) for multiple real-world datasets (i.e., Camvid, Cityscapes, and Apolloscapes) and CARLA simulation dataset.
Abstract:Anomaly detection methods typically require extensive normal samples from the target class for training, limiting their applicability in scenarios that require rapid adaptation, such as cold start. Zero-shot and few-shot anomaly detection do not require labeled samples from the target class in advance, making them a promising research direction. Existing zero-shot and few-shot approaches often leverage powerful multimodal models to detect and localize anomalies by comparing image-text similarity. However, their handcrafted generic descriptions fail to capture the diverse range of anomalies that may emerge in different objects, and simple patch-level image-text matching often struggles to localize anomalous regions of varying shapes and sizes. To address these issues, this paper proposes the FiLo++ method, which consists of two key components. The first component, Fused Fine-Grained Descriptions (FusDes), utilizes large language models to generate anomaly descriptions for each object category, combines both fixed and learnable prompt templates and applies a runtime prompt filtering method, producing more accurate and task-specific textual descriptions. The second component, Deformable Localization (DefLoc), integrates the vision foundation model Grounding DINO with position-enhanced text descriptions and a Multi-scale Deformable Cross-modal Interaction (MDCI) module, enabling accurate localization of anomalies with various shapes and sizes. In addition, we design a position-enhanced patch matching approach to improve few-shot anomaly detection performance. Experiments on multiple datasets demonstrate that FiLo++ achieves significant performance improvements compared with existing methods. Code will be available at https://github.com/CASIA-IVA-Lab/FiLo.
Abstract:To improve the generalization of the autonomous driving (AD) perception model, vehicles need to update the model over time based on the continuously collected data. As time progresses, the amount of data fitted by the AD model expands, which helps to improve the AD model generalization substantially. However, such ever-expanding data is a double-edged sword for the AD model. Specifically, as the fitted data volume grows to exceed the the AD model's fitting capacities, the AD model is prone to under-fitting. To address this issue, we propose to use a pretrained Large Vision Models (LVMs) as backbone coupled with downstream perception head to understand AD semantic information. This design can not only surmount the aforementioned under-fitting problem due to LVMs' powerful fitting capabilities, but also enhance the perception generalization thanks to LVMs' vast and diverse training data. On the other hand, to mitigate vehicles' computational burden of training the perception head while running LVM backbone, we introduce a Posterior Optimization Trajectory (POT)-Guided optimization scheme (POTGui) to accelerate the convergence. Concretely, we propose a POT Generator (POTGen) to generate posterior (future) optimization direction in advance to guide the current optimization iteration, through which the model can generally converge within 10 epochs. Extensive experiments demonstrate that the proposed method improves the performance by over 66.48\% and converges faster over 6 times, compared to the existing state-of-the-art approach.
Abstract:Large vision-language models (LVLMs) have made substantial progress in integrating large language models (LLMs) with visual inputs, enabling advanced multimodal reasoning. Despite their success, a persistent challenge is hallucination-where generated text fails to accurately reflect visual content-undermining both accuracy and reliability. Existing methods focus on alignment training or decoding refinements but primarily address symptoms at the generation stage without probing the underlying causes. In this work, we investigate the internal mechanisms driving hallucination in LVLMs, with an emphasis on the multi-head attention module. Specifically, we introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context. Based on this, our findings reveal the presence of vision-aware attention heads that are more attuned to visual information; however, the model's overreliance on its prior language patterns is closely related to hallucinations. Building on these insights, we propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads. Extensive experiments demonstrate that our method achieves superior performance compared to state-of-the-art approaches in mitigating hallucinations, while maintaining high efficiency with negligible additional time overhead.
Abstract:Visual Anomaly Detection (VAD) aims to identify abnormal samples in images that deviate from normal patterns, covering multiple domains, including industrial, logical, and medical fields. Due to the domain gaps between these fields, existing VAD methods are typically tailored to each domain, with specialized detection techniques and model architectures that are difficult to generalize across different domains. Moreover, even within the same domain, current VAD approaches often follow a "one-category-one-model" paradigm, requiring large amounts of normal samples to train class-specific models, resulting in poor generalizability and hindering unified evaluation across domains. To address this issue, we propose a generalized few-shot VAD method, UniVAD, capable of detecting anomalies across various domains, such as industrial, logical, and medical anomalies, with a training-free unified model. UniVAD only needs few normal samples as references during testing to detect anomalies in previously unseen objects, without training on the specific domain. Specifically, UniVAD employs a Contextual Component Clustering ($C^3$) module based on clustering and vision foundation models to segment components within the image accurately, and leverages Component-Aware Patch Matching (CAPM) and Graph-Enhanced Component Modeling (GECM) modules to detect anomalies at different semantic levels, which are aggregated to produce the final detection result. We conduct experiments on nine datasets spanning industrial, logical, and medical fields, and the results demonstrate that UniVAD achieves state-of-the-art performance in few-shot anomaly detection tasks across multiple domains, outperforming domain-specific anomaly detection models. The code will be made publicly available.
Abstract:Overfitting has long been stigmatized as detrimental to model performance, especially in the context of anomaly detection. Our work challenges this conventional view by introducing a paradigm shift, recasting overfitting as a controllable and strategic mechanism for enhancing model discrimination capabilities. In this paper, we present Controllable Overfitting-based Anomaly Detection (COAD), a novel framework designed to leverage overfitting for optimized anomaly detection. We propose the Aberrance Retention Quotient (ARQ), a novel metric that systematically quantifies the extent of overfitting, enabling the identification of an optimal "golden overfitting interval." Within this interval, overfitting is leveraged to significantly amplify the model's sensitivity to anomalous patterns, while preserving generalization to normal samples. Additionally, we present the Relative Anomaly Distribution Index (RADI), an innovative metric designed to complement AUROC pixel by providing a more versatile and theoretically robust framework for assessing model performance. RADI leverages ARQ to track and evaluate how overfitting impacts anomaly detection, offering an integrated approach to understanding the relationship between overfitting dynamics and model efficacy. Our theoretical work also rigorously validates the use of Gaussian noise in pseudo anomaly synthesis, providing the foundation for its broader applicability across diverse domains. Empirical evaluations demonstrate that our controllable overfitting method not only achieves State of the Art (SOTA) performance in both one-class and multi-class anomaly detection tasks but also redefines overfitting from a modeling challenge into a powerful tool for optimizing anomaly detection.
Abstract:Continual learning (CL) is crucial for language models to dynamically adapt to the evolving real-world demands. To mitigate the catastrophic forgetting problem in CL, data replay has been proven a simple and effective strategy, and the subsequent data-replay-based distillation can further enhance the performance. However, existing methods fail to fully exploit the knowledge embedded in models from previous tasks, resulting in the need for a relatively large number of replay samples to achieve good results. In this work, we first explore and emphasize the importance of attention weights in knowledge retention, and then propose a SElective attEntion-guided Knowledge Retention method (SEEKR) for data-efficient replay-based continual learning of large language models (LLMs). Specifically, SEEKR performs attention distillation on the selected attention heads for finer-grained knowledge retention, where the proposed forgettability-based and task-sensitivity-based measures are used to identify the most valuable attention heads. Experimental results on two continual learning benchmarks for LLMs demonstrate the superiority of SEEKR over the existing methods on both performance and efficiency. Explicitly, SEEKR achieves comparable or even better performance with only 1/10 of the replayed data used by other methods, and reduces the proportion of replayed data to 1%.
Abstract:Large Multimodal Models (LMMs) have achieved significant breakthroughs in various vision-language and vision-centric tasks based on auto-regressive modeling. However, these models typically focus on either vision-centric tasks, such as visual grounding and region description, or vision-language tasks, like image caption and multi-scenario VQAs. None of the LMMs have yet comprehensively unified both types of tasks within a single model, as seen in Large Language Models in the natural language processing field. Furthermore, even with abundant multi-task instruction-following data, directly stacking these data for universal capabilities extension remains challenging. To address these issues, we introduce a novel multi-dimension curated and consolidated multimodal dataset, named CCMD-8M, which overcomes the data barriers of unifying vision-centric and vision-language tasks through multi-level data curation and multi-task consolidation. More importantly, we present Griffon-G, a general large multimodal model that addresses both vision-centric and vision-language tasks within a single end-to-end paradigm. Griffon-G resolves the training collapse issue encountered during the joint optimization of these tasks, achieving better training efficiency. Evaluations across multimodal benchmarks, general Visual Question Answering (VQA) tasks, scene text-centric VQA tasks, document-related VQA tasks, Referring Expression Comprehension, and object detection demonstrate that Griffon-G surpasses the advanced LMMs and achieves expert-level performance in complicated vision-centric tasks.