National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences
Abstract:Audio-visual video parsing focuses on classifying videos through weak labels while identifying events as either visible, audible, or both, alongside their respective temporal boundaries. Many methods ignore that different modalities often lack alignment, thereby introducing extra noise during modal interaction. In this work, we introduce a Learning Interaction method for Non-aligned Knowledge (LINK), designed to equilibrate the contributions of distinct modalities by dynamically adjusting their input during event prediction. Additionally, we leverage the semantic information of pseudo-labels as a priori knowledge to mitigate noise from other modalities. Our experimental findings demonstrate that our model outperforms existing methods on the LLP dataset.
Abstract:Visual Anomaly Detection (VAD) aims to identify abnormal samples in images that deviate from normal patterns, covering multiple domains, including industrial, logical, and medical fields. Due to the domain gaps between these fields, existing VAD methods are typically tailored to each domain, with specialized detection techniques and model architectures that are difficult to generalize across different domains. Moreover, even within the same domain, current VAD approaches often follow a "one-category-one-model" paradigm, requiring large amounts of normal samples to train class-specific models, resulting in poor generalizability and hindering unified evaluation across domains. To address this issue, we propose a generalized few-shot VAD method, UniVAD, capable of detecting anomalies across various domains, such as industrial, logical, and medical anomalies, with a training-free unified model. UniVAD only needs few normal samples as references during testing to detect anomalies in previously unseen objects, without training on the specific domain. Specifically, UniVAD employs a Contextual Component Clustering ($C^3$) module based on clustering and vision foundation models to segment components within the image accurately, and leverages Component-Aware Patch Matching (CAPM) and Graph-Enhanced Component Modeling (GECM) modules to detect anomalies at different semantic levels, which are aggregated to produce the final detection result. We conduct experiments on nine datasets spanning industrial, logical, and medical fields, and the results demonstrate that UniVAD achieves state-of-the-art performance in few-shot anomaly detection tasks across multiple domains, outperforming domain-specific anomaly detection models. The code will be made publicly available.
Abstract:Sequential recommendation approaches have demonstrated remarkable proficiency in modeling user preferences. Nevertheless, they are susceptible to profile pollution attacks (PPA), wherein items are introduced into a user's interaction history deliberately to influence the recommendation list. Since retraining the model for each polluted item is time-consuming, recent PPAs estimate item influence based on gradient directions to identify the most effective attack candidates. However, the actual item representations diverge significantly from the gradients, resulting in disparate outcomes.To tackle this challenge, we introduce an INFluence Function-based Attack approach INFAttack that offers a more accurate estimation of the influence of polluting items. Specifically, we calculate the modifications to the original model using the influence function when generating polluted sequences by introducing specific items. Subsequently, we choose the sequence that has been most significantly influenced to substitute the original sequence, thus promoting the target item. Comprehensive experiments conducted on five real-world datasets illustrate that INFAttack surpasses all baseline methods and consistently delivers stable attack performance for both popular and unpopular items.
Abstract:Overfitting has long been stigmatized as detrimental to model performance, especially in the context of anomaly detection. Our work challenges this conventional view by introducing a paradigm shift, recasting overfitting as a controllable and strategic mechanism for enhancing model discrimination capabilities. In this paper, we present Controllable Overfitting-based Anomaly Detection (COAD), a novel framework designed to leverage overfitting for optimized anomaly detection. We propose the Aberrance Retention Quotient (ARQ), a novel metric that systematically quantifies the extent of overfitting, enabling the identification of an optimal "golden overfitting interval." Within this interval, overfitting is leveraged to significantly amplify the model's sensitivity to anomalous patterns, while preserving generalization to normal samples. Additionally, we present the Relative Anomaly Distribution Index (RADI), an innovative metric designed to complement AUROC pixel by providing a more versatile and theoretically robust framework for assessing model performance. RADI leverages ARQ to track and evaluate how overfitting impacts anomaly detection, offering an integrated approach to understanding the relationship between overfitting dynamics and model efficacy. Our theoretical work also rigorously validates the use of Gaussian noise in pseudo anomaly synthesis, providing the foundation for its broader applicability across diverse domains. Empirical evaluations demonstrate that our controllable overfitting method not only achieves State of the Art (SOTA) performance in both one-class and multi-class anomaly detection tasks but also redefines overfitting from a modeling challenge into a powerful tool for optimizing anomaly detection.
Abstract:Zero-shot anomaly detection (ZSAD) methods entail detecting anomalies directly without access to any known normal or abnormal samples within the target item categories. Existing approaches typically rely on the robust generalization capabilities of multimodal pretrained models, computing similarities between manually crafted textual features representing "normal" or "abnormal" semantics and image features to detect anomalies and localize anomalous patches. However, the generic descriptions of "abnormal" often fail to precisely match diverse types of anomalies across different object categories. Additionally, computing feature similarities for single patches struggles to pinpoint specific locations of anomalies with various sizes and scales. To address these issues, we propose a novel ZSAD method called FiLo, comprising two components: adaptively learned Fine-Grained Description (FG-Des) and position-enhanced High-Quality Localization (HQ-Loc). FG-Des introduces fine-grained anomaly descriptions for each category using Large Language Models (LLMs) and employs adaptively learned textual templates to enhance the accuracy and interpretability of anomaly detection. HQ-Loc, utilizing Grounding DINO for preliminary localization, position-enhanced text prompts, and Multi-scale Multi-shape Cross-modal Interaction (MMCI) module, facilitates more accurate localization of anomalies of different sizes and shapes. Experimental results on datasets like MVTec and VisA demonstrate that FiLo significantly improves the performance of ZSAD in both detection and localization, achieving state-of-the-art performance with an image-level AUC of 83.9% and a pixel-level AUC of 95.9% on the VisA dataset.
Abstract:Vision-Language Models (VLMs), such as CLIP, play a foundational role in various cross-modal applications. To fully leverage VLMs' potential in adapting to downstream tasks, context optimization methods like Prompt Tuning are essential. However, one key limitation is the lack of diversity in prompt templates, whether they are hand-crafted or learned through additional modules. This limitation restricts the capabilities of pretrained VLMs and can result in incorrect predictions in downstream tasks. To address this challenge, we propose Context Optimization with Multi-Knowledge Representation (CoKnow), a framework that enhances Prompt Learning for VLMs with rich contextual knowledge. To facilitate CoKnow during inference, we trained lightweight semantic knowledge mappers, which are capable of generating Multi-Knowledge Representation for an input image without requiring additional priors. Experimentally, We conducted extensive experiments on 11 publicly available datasets, demonstrating that CoKnow outperforms a series of previous methods. We will make all resources open-source: https://github.com/EMZucas/CoKnow.
Abstract:In the exciting generative AI era, the diffusion model has emerged as a very powerful and widely adopted content generation and editing tool for various data modalities, making the study of their potential security risks very necessary and critical. Very recently, some pioneering works have shown the vulnerability of the diffusion model against backdoor attacks, calling for in-depth analysis and investigation of the security challenges of this popular and fundamental AI technique. In this paper, for the first time, we systematically explore the detectability of the poisoned noise input for the backdoored diffusion models, an important performance metric yet little explored in the existing works. Starting from the perspective of a defender, we first analyze the properties of the trigger pattern in the existing diffusion backdoor attacks, discovering the important role of distribution discrepancy in Trojan detection. Based on this finding, we propose a low-cost trigger detection mechanism that can effectively identify the poisoned input noise. We then take a further step to study the same problem from the attack side, proposing a backdoor attack strategy that can learn the unnoticeable trigger to evade our proposed detection scheme. Empirical evaluations across various diffusion models and datasets demonstrate the effectiveness of the proposed trigger detection and detection-evading attack strategy. For trigger detection, our distribution discrepancy-based solution can achieve a 100\% detection rate for the Trojan triggers used in the existing works. For evading trigger detection, our proposed stealthy trigger design approach performs end-to-end learning to make the distribution of poisoned noise input approach that of benign noise, enabling nearly 100\% detection pass rate with very high attack and benign performance for the backdoored diffusion models.
Abstract:Physical layer key generation based on reciprocal and random wireless channels has been an attractive solution for securing resource-constrained low-power wide-area networks (LPWANs). When quantizing channel measurements, namely received signal strength indicator (RSSI), into key bits, the existing works mainly adopt fixed quantization levels and guard band parameters, which fail to fully extract keys from RSSI measurements. In this paper, we propose a novel adaptive quantization scheme for key generation in LPWANs, taking LoRa as a case study. The proposed adaptive quantization scheme can dynamically adjust the quantization parameters according to the randomness of RSSI measurements estimated by Lempel-Ziv complexity (LZ76), while ensuring a predefined key disagreement ratio (KDR). Specifically, our scheme uses pre-trained linear regression models to determine the appropriate quantization level and guard band parameter for each segment of RSSI measurements. Moreover, we propose a guard band parameter calibration scheme during information reconciliation during real-time key generation operation. Experimental evaluations using LoRa devices show that the proposed adaptive quantization scheme outperforms the benchmark differential quantization and fixed quantization with up to 2.35$\times$ and 1.51$\times$ key generation rate (KGR) gains, respectively.
Abstract:Large Vision-Language Models (LVLMs) such as MiniGPT-4 and LLaVA have demonstrated the capability of understanding images and achieved remarkable performance in various visual tasks. Despite their strong abilities in recognizing common objects due to extensive training datasets, they lack specific domain knowledge and have a weaker understanding of localized details within objects, which hinders their effectiveness in the Industrial Anomaly Detection (IAD) task. On the other hand, most existing IAD methods only provide anomaly scores and necessitate the manual setting of thresholds to distinguish between normal and abnormal samples, which restricts their practical implementation. In this paper, we explore the utilization of LVLM to address the IAD problem and propose AnomalyGPT, a novel IAD approach based on LVLM. We generate training data by simulating anomalous images and producing corresponding textual descriptions for each image. We also employ an image decoder to provide fine-grained semantic and design a prompt learner to fine-tune the LVLM using prompt embeddings. Our AnomalyGPT eliminates the need for manual threshold adjustments, thus directly assesses the presence and locations of anomalies. Additionally, AnomalyGPT supports multi-turn dialogues and exhibits impressive few-shot in-context learning capabilities. With only one normal shot, AnomalyGPT achieves the state-of-the-art performance with an accuracy of 86.1%, an image-level AUC of 94.1%, and a pixel-level AUC of 95.3% on the MVTec-AD dataset. Code is available at https://github.com/CASIA-IVA-Lab/AnomalyGPT.
Abstract:Deep Neural Networks (DNNs) for 3D point cloud recognition are vulnerable to adversarial examples, threatening their practical deployment. Despite the many research endeavors have been made to tackle this issue in recent years, the diversity of adversarial examples on 3D point clouds makes them more challenging to defend against than those on 2D images. For examples, attackers can generate adversarial examples by adding, shifting, or removing points. Consequently, existing defense strategies are hard to counter unseen point cloud adversarial examples. In this paper, we first establish a comprehensive, and rigorous point cloud adversarial robustness benchmark to evaluate adversarial robustness, which can provide a detailed understanding of the effects of the defense and attack methods. We then collect existing defense tricks in point cloud adversarial defenses and then perform extensive and systematic experiments to identify an effective combination of these tricks. Furthermore, we propose a hybrid training augmentation methods that consider various types of point cloud adversarial examples to adversarial training, significantly improving the adversarial robustness. By combining these tricks, we construct a more robust defense framework achieving an average accuracy of 83.45\% against various attacks, demonstrating its capability to enabling robust learners. Our codebase are open-sourced on: \url{https://github.com/qiufan319/benchmark_pc_attack.git}.