Abstract:Label noise is pervasive in various real-world scenarios, posing challenges in supervised deep learning. Deep networks are vulnerable to such label-corrupted samples due to the memorization effect. One major stream of previous methods concentrates on identifying clean data for training. However, these methods often neglect imbalances in label noise across different mini-batches and devote insufficient attention to out-of-distribution noisy data. To this end, we propose a noise-robust method named Jo-SNC (\textbf{Jo}int sample selection and model regularization based on \textbf{S}elf- and \textbf{N}eighbor-\textbf{C}onsistency). Specifically, we propose to employ the Jensen-Shannon divergence to measure the ``likelihood'' of a sample being clean or out-of-distribution. This process factors in the nearest neighbors of each sample to reinforce the reliability of clean sample identification. We design a self-adaptive, data-driven thresholding scheme to adjust per-class selection thresholds. While clean samples undergo conventional training, detected in-distribution and out-of-distribution noisy samples are trained following partial label learning and negative learning, respectively. Finally, we advance the model performance further by proposing a triplet consistency regularization that promotes self-prediction consistency, neighbor-prediction consistency, and feature consistency. Extensive experiments on various benchmark datasets and comprehensive ablation studies demonstrate the effectiveness and superiority of our approach over existing state-of-the-art methods.
Abstract:Comprehensively and flexibly capturing the complex spatio-temporal dependencies of human motion is critical for multi-person motion prediction. Existing methods grapple with two primary limitations: i) Inflexible spatiotemporal representation due to reliance on positional encodings for capturing spatiotemporal information. ii) High computational costs stemming from the quadratic time complexity of conventional attention mechanisms. To overcome these limitations, we propose the Spatiotemporal-Untrammelled Mixture of Experts (ST-MoE), which flexibly explores complex spatio-temporal dependencies in human motion and significantly reduces computational cost. To adaptively mine complex spatio-temporal patterns from human motion, our model incorporates four distinct types of spatiotemporal experts, each specializing in capturing different spatial or temporal dependencies. To reduce the potential computational overhead while integrating multiple experts, we introduce bidirectional spatiotemporal Mamba as experts, each sharing bidirectional temporal and spatial Mamba in distinct combinations to achieve model efficiency and parameter economy. Extensive experiments on four multi-person benchmark datasets demonstrate that our approach not only outperforms state-of-art in accuracy but also reduces model parameter by 41.38% and achieves a 3.6x speedup in training. The code is available at https://github.com/alanyz106/ST-MoE.




Abstract:Recent studies have witnessed significant advances in image restoration foundation models driven by improvements in the scale and quality of pre-training data. In this work, we find that the data mixture proportions from different restoration tasks are also a critical factor directly determining the overall performance of all-in-one image restoration models. To this end, we propose a high-capacity diffusion-based image restoration foundation model, FoundIR-v2, which adopts a data equilibrium scheduling paradigm to dynamically optimize the proportions of mixed training datasets from different tasks. By leveraging the data mixing law, our method ensures a balanced dataset composition, enabling the model to achieve consistent generalization and comprehensive performance across diverse tasks. Furthermore, we introduce an effective Mixture-of-Experts (MoE)-driven scheduler into generative pre-training to flexibly allocate task-adaptive diffusion priors for each restoration task, accounting for the distinct degradation forms and levels exhibited by different tasks. Extensive experiments demonstrate that our method can address over 50 sub-tasks across a broader scope of real-world scenarios and achieves favorable performance against state-of-the-art approaches.




Abstract:Diffusion models have achieved remarkable success in conditional image generation, yet their outputs often remain misaligned with human preferences. To address this, recent work has applied Direct Preference Optimization (DPO) to diffusion models, yielding significant improvements.~However, DPO-like methods exhibit two key limitations: 1) High computational cost,due to the entire model fine-tuning; 2) Sensitivity to reference model quality}, due to its tendency to introduce instability and bias. To overcome these limitations, we propose a novel framework for human preference alignment in diffusion models (PC-Diffusion), using a lightweight, trainable Preference Classifier that directly models the relative preference between samples. By restricting preference learning to this classifier, PC-Diffusion decouples preference alignment from the generative model, eliminating the need for entire model fine-tuning and reference model reliance.~We further provide theoretical guarantees for PC-Diffusion:1) PC-Diffusion ensures that the preference-guided distributions are consistently propagated across timesteps. 2)The training objective of the preference classifier is equivalent to DPO, but does not require a reference model.3) The proposed preference-guided correction can progressively steer generation toward preference-aligned regions.~Empirical results show that PC-Diffusion achieves comparable preference consistency to DPO while significantly reducing training costs and enabling efficient and stable preference-guided generation.
Abstract:Two-view correspondence pruning aims to accurately remove incorrect correspondences (outliers) from initial ones and is widely applied to various computer vision tasks. Current popular strategies adopt multilayer perceptron (MLP) as the backbone, supplemented by additional modules to enhance the network ability to handle context information, which is a known limitation of MLPs. In contrast, we introduce a novel perspective for capturing correspondence context information without extra design modules. To this end, we design a two-view correspondence pruning network called LeCoT, which can naturally leverage global context information at different stages. Specifically, the core design of LeCoT is the Spatial-Channel Fusion Transformer block, a newly proposed component that efficiently utilizes both spatial and channel global context information among sparse correspondences. In addition, we integrate the proposed prediction block that utilizes correspondence features from intermediate stages to generate a probability set, which acts as guiding information for subsequent learning phases, allowing the network to more effectively capture robust global context information. Notably, this prediction block progressively refines the probability set, thereby mitigating the issue of information loss that is common in the traditional one. Extensive experiments prove that the proposed LeCoT outperforms state-of-the-art methods in correspondence pruning, relative pose estimation, homography estimation, visual localization, and $3$D~reconstruction tasks. The code is provided in https://github.com/Dailuanyuan2024/LeCoT-Revisiting-Network-Architecture-for-Two-View-Correspondence-Pruning.




Abstract:People see text. Humans read by recognizing words as visual objects, including their shapes, layouts, and patterns, before connecting them to meaning, which enables us to handle typos, distorted fonts, and various scripts effectively. Modern large language models (LLMs), however, rely on subword tokenization, fragmenting text into pieces from a fixed vocabulary. While effective for high-resource languages, this approach over-segments low-resource languages, yielding long, linguistically meaningless sequences and inflating computation. In this work, we challenge this entrenched paradigm and move toward a vision-centric alternative. Our method, SeeTok, renders text as images (visual-text) and leverages pretrained multimodal LLMs to interpret them, reusing strong OCR and text-vision alignment abilities learned from large-scale multimodal training. Across three different language tasks, SeeTok matches or surpasses subword tokenizers while requiring 4.43 times fewer tokens and reducing FLOPs by 70.5%, with additional gains in cross-lingual generalization, robustness to typographic noise, and linguistic hierarchy. SeeTok signals a shift from symbolic tokenization to human-like visual reading, and takes a step toward more natural and cognitively inspired language models.
Abstract:Weakly-supervised semantic segmentation aims to assign category labels to each pixel using weak annotations, significantly reducing manual annotation costs. Although existing methods have achieved remarkable progress in well-lit scenarios, their performance significantly degrades in low-light environments due to two fundamental limitations: severe image quality degradation (e.g., low contrast, noise, and color distortion) and the inherent constraints of weak supervision. These factors collectively lead to unreliable class activation maps and semantically ambiguous pseudo-labels, ultimately compromising the model's ability to learn discriminative feature representations. To address these problems, we propose Diffusion-Guided Knowledge Distillation for Weakly-Supervised Low-light Semantic Segmentation (DGKD-WLSS), a novel framework that synergistically combines Diffusion-Guided Knowledge Distillation (DGKD) with Depth-Guided Feature Fusion (DGF2). DGKD aligns normal-light and low-light features via diffusion-based denoising and knowledge distillation, while DGF2 integrates depth maps as illumination-invariant geometric priors to enhance structural feature learning. Extensive experiments demonstrate the effectiveness of DGKD-WLSS, which achieves state-of-the-art performance in weakly supervised semantic segmentation tasks under low-light conditions. The source codes have been released at:https://github.com/ChunyanWang1/DGKD-WLSS.
Abstract:Driven by advancements in motion capture and generative artificial intelligence, leveraging large-scale MoCap datasets to train generative models for synthesizing diverse, realistic human motions has become a promising research direction. However, existing motion-capture techniques and generative models often neglect physical constraints, leading to artifacts such as interpenetration, sliding, and floating. These issues are exacerbated in multi-person motion generation, where complex interactions are involved. To address these limitations, we introduce physical mapping, integrated throughout the human interaction generation pipeline. Specifically, motion imitation within a physics-based simulation environment is used to project target motions into a physically valid space. The resulting motions are adjusted to adhere to real-world physics constraints while retaining their original semantic meaning. This mapping not only improves MoCap data quality but also directly informs post-processing of generated motions. Given the unique interactivity of multi-person scenarios, we propose a tailored motion representation framework. Motion Consistency (MC) and Marker-based Interaction (MI) loss functions are introduced to improve model performance. Experiments show our method achieves impressive results in generated human motion quality, with a 3%-89% improvement in physical fidelity. Project page http://yw0208.github.io/physiinter
Abstract:Large vision-language models (LVLMs) have significantly advanced numerous fields. In this work, we explore how to harness their potential to address 3D scene understanding tasks, using 3D question answering (3D-QA) as a representative example. Due to the limited training data in 3D, we do not train LVLMs but infer in a zero-shot manner. Specifically, we sample 2D views from a 3D point cloud and feed them into 2D models to answer a given question. When the 2D model is chosen, e.g., LLAVA-OV, the quality of sampled views matters the most. We propose cdViews, a novel approach to automatically selecting critical and diverse Views for 3D-QA. cdViews consists of two key components: viewSelector prioritizing critical views based on their potential to provide answer-specific information, and viewNMS enhancing diversity by removing redundant views based on spatial overlap. We evaluate cdViews on the widely-used ScanQA and SQA benchmarks, demonstrating that it achieves state-of-the-art performance in 3D-QA while relying solely on 2D models without fine-tuning. These findings support our belief that 2D LVLMs are currently the most effective alternative (of the resource-intensive 3D LVLMs) for addressing 3D tasks.




Abstract:We present Plenodium (plenoptic medium), an effective and efficient 3D representation framework capable of jointly modeling both objects and participating media. In contrast to existing medium representations that rely solely on view-dependent modeling, our novel plenoptic medium representation incorporates both directional and positional information through spherical harmonics encoding, enabling highly accurate underwater scene reconstruction. To address the initialization challenge in degraded underwater environments, we propose the pseudo-depth Gaussian complementation to augment COLMAP-derived point clouds with robust depth priors. In addition, a depth ranking regularized loss is developed to optimize the geometry of the scene and improve the ordinal consistency of the depth maps. Extensive experiments on real-world underwater datasets demonstrate that our method achieves significant improvements in 3D reconstruction. Furthermore, we conduct a simulated dataset with ground truth and the controllable scattering medium to demonstrate the restoration capability of our method in underwater scenarios. Our code and dataset are available at https://plenodium.github.io/.