Abstract:Large language models (LLMs) achieve strong capabilities by scaling model capacity and training data, yet many real-world deployments rely on smaller models trained or adapted from low-resource data. This gap motivates the need for mechanisms to transfer knowledge from large, high-resource models to smaller, low-resource targets. While model merging provides an effective transfer mechanism, most existing approaches assume architecture-compatible models and therefore cannot directly transfer knowledge from large high-resource LLMs to heterogeneous low-resource targets. In this work, we propose a cross-architecture merging framework based on optimal transport (OT) that aligns activations to infer cross-neuron correspondences between heterogeneous models. The resulting transport plans are then used to guide direct weight-space fusion, enabling effective high-resource to low-resource transfer using only a small set of inputs. Extensive experiments across low-resource languages and specialized domains demonstrate consistent improvements over target models.
Abstract:Multilingual safety remains significantly imbalanced, leaving non-high-resource (NHR) languages vulnerable compared to robust high-resource (HR) ones. Moreover, the neural mechanisms driving safety alignment remain unclear despite observed cross-lingual representation transfer. In this paper, we find that LLMs contain a set of cross-lingual shared safety neurons (SS-Neurons), a remarkably small yet critical neuronal subset that jointly regulates safety behavior across languages. We first identify monolingual safety neurons (MS-Neurons) and validate their causal role in safety refusal behavior through targeted activation and suppression. Our cross-lingual analyses then identify SS-Neurons as the subset of MS-Neurons shared between HR and NHR languages, serving as a bridge to transfer safety capabilities from HR to NHR domains. We observe that suppressing these neurons causes concurrent safety drops across NHR languages, whereas reinforcing them improves cross-lingual defensive consistency. Building on these insights, we propose a simple neuron-oriented training strategy that targets SS-Neurons based on language resource distribution and model architecture. Experiments demonstrate that fine-tuning this tiny neuronal subset outperforms state-of-the-art methods, significantly enhancing NHR safety while maintaining the model's general capabilities. The code and dataset will be available athttps://github.com/1518630367/SS-Neuron-Expansion.
Abstract:As generative AI achieves hyper-realism, superficial artifact detection has become obsolete. While prevailing methods rely on resource-intensive fine-tuning of black-box backbones, we propose that forgery detection capability is already encoded within pre-trained models rather than requiring end-to-end retraining. To elicit this intrinsic capability, we propose the discriminative neural anchors (DNA) framework, which employs a coarse-to-fine excavation mechanism. First, by analyzing feature decoupling and attention distribution shifts, we pinpoint critical intermediate layers where the focus of the model logically transitions from global semantics to local anomalies. Subsequently, we introduce a triadic fusion scoring metric paired with a curvature-truncation strategy to strip away semantic redundancy, precisely isolating the forgery-discriminative units (FDUs) inherently imprinted with sensitivity to forgery traces. Moreover, we introduce HIFI-Gen, a high-fidelity synthetic benchmark built upon the very latest models, to address the lag in existing datasets. Experiments demonstrate that by solely relying on these anchors, DNA achieves superior detection performance even under few-shot conditions. Furthermore, it exhibits remarkable robustness across diverse architectures and against unseen generative models, validating that waking up latent neurons is more effective than extensive fine-tuning.
Abstract:Robust safety of vision-language large models (VLLMs) under joint multilingual and multimodal inputs remains underexplored. Existing benchmarks are typically multilingual but text-only, or multimodal but monolingual. Recent multilingual multimodal red-teaming efforts render harmful prompts into images, yet rely heavily on typography-style visuals and lack semantically grounded image-text pairs, limiting coverage of realistic cross-modal interactions. We introduce Lingua-SafetyBench, a benchmark of 100,440 harmful image-text pairs across 10 languages, explicitly partitioned into image-dominant and text-dominant subsets to disentangle risk sources. Evaluating 11 open-source VLLMs reveals a consistent asymmetry: image-dominant risks yield higher ASR in high-resource languages, while text-dominant risks are more severe in non-high-resource languages. A controlled study on the Qwen series shows that scaling and version upgrades reduce Attack Success Rate (ASR) overall but disproportionately benefit HRLs, widening the gap between HRLs and Non-HRLs under text-dominant risks. This underscores the necessity of language- and modality-aware safety alignment beyond mere scaling.To facilitate reproducibility and future research, we will publicly release our benchmark, model checkpoints, and source code.The code and dataset will be available at https://github.com/zsxr15/Lingua-SafetyBench.Warning: this paper contains examples with unsafe content.
Abstract:Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
Abstract:Reliable zero-shot detection of out-of-distribution (OOD) inputs is critical for deploying vision-language models in open-world settings. However, the lack of labeled negatives in zero-shot OOD detection necessitates proxy signals that remain effective under distribution shift. Existing negative-label methods rely on a fixed set of textual proxies, which (i) sparsely sample the semantic space beyond in-distribution (ID) classes and (ii) remain static while only visual features drift, leading to cross-modal misalignment and unstable predictions. In this paper, we propose CoEvo, a training- and annotation-free test-time framework that performs bidirectional, sample-conditioned adaptation of both textual and visual proxies. Specifically, CoEvo introduces a proxy-aligned co-evolution mechanism to maintain two evolving proxy caches, which dynamically mines contextual textual negatives guided by test images and iteratively refines visual proxies, progressively realigning cross-modal similarities and enlarging local OOD margins. Finally, we dynamically re-weight the contributions of dual-modal proxies to obtain a calibrated OOD score that is robust to distribution shift. Extensive experiments on standard benchmarks demonstrate that CoEvo achieves state-of-the-art performance, improving AUROC by 1.33% and reducing FPR95 by 45.98% on ImageNet-1K compared to strong negative-label baselines.
Abstract:Large language models (LLMs) equipped with retrieval--the Retrieval-Augmented Generation (RAG) paradigm--should combine their parametric knowledge with external evidence, yet in practice they often hallucinate, over-trust noisy snippets, or ignore vital context. We introduce TCR (Transparent Conflict Resolution), a plug-and-play framework that makes this decision process observable and controllable. TCR (i) disentangles semantic match and factual consistency via dual contrastive encoders, (ii) estimates self-answerability to gauge confidence in internal memory, and (iii) feeds the three scalar signals to the generator through a lightweight soft-prompt with SNR-based weighting. Across seven benchmarks TCR improves conflict detection (+5-18 F1), raises knowledge-gap recovery by +21.4 pp and cuts misleading-context overrides by -29.3 pp, while adding only 0.3% parameters. The signals align with human judgements and expose temporal decision patterns.
Abstract:Machine unlearning aims to forget sensitive knowledge from Large Language Models (LLMs) while maintaining general utility. However, existing approaches typically treat all tokens in a response indiscriminately and enforce uncertainty over the entire vocabulary. This global treatment results in unnecessary utility degradation and extends optimization to content-agnostic regions. To address these limitations, we propose PALU (Prefix-Aware Localized Unlearning), a framework driven by a local entropy maximization objective across both temporal and vocabulary dimensions. PALU reveals that (i) suppressing the sensitive prefix alone is sufficient to sever the causal generation link, and (ii) flattening only the top-$k$ logits is adequate to maximize uncertainty in the critical subspace. These findings allow PALU to avoid redundant optimization across the full vocabulary and parameter space while minimizing collateral damage to general model performance. Extensive experiments validate that PALU achieves superior forgetting efficacy and utility preservation compared to state-of-the-art baselines.
Abstract:Anomaly detection is crucial in industrial product quality inspection. Failing to detect tiny defects often leads to serious consequences. Existing methods face a structure-semantics trade-off: structure-oriented models (such as frequency-based filters) are noise-sensitive, while semantics-oriented models (such as CLIP-based encoders) often miss fine details. To address this, we propose HarmoniAD, a frequency-guided dual-branch framework. Features are first extracted by the CLIP image encoder, then transformed into the frequency domain, and finally decoupled into high- and low-frequency paths for complementary modeling of structure and semantics. The high-frequency branch is equipped with a fine-grained structural attention module (FSAM) to enhance textures and edges for detecting small anomalies, while the low-frequency branch uses a global structural context module (GSCM) to capture long-range dependencies and preserve semantic consistency. Together, these branches balance fine detail and global semantics. HarmoniAD further adopts a multi-class joint training strategy, and experiments on MVTec-AD, VisA, and BTAD show state-of-the-art performance with both sensitivity and robustness.
Abstract:Pose-guided human image generation is limited by incomplete textures from single reference views and the absence of explicit cross-view interaction. We present jointly conditioned diffusion model (JCDM), a jointly conditioned diffusion framework that exploits multi-view priors. The appearance prior module (APM) infers a holistic identity preserving prior from incomplete references, and the joint conditional injection (JCI) mechanism fuses multi-view cues and injects shared conditioning into the denoising backbone to align identity, color, and texture across poses. JCDM supports a variable number of reference views and integrates with standard diffusion backbones with minimal and targeted architectural modifications. Experiments demonstrate state of the art fidelity and cross-view consistency.