Abstract:Reliable zero-shot detection of out-of-distribution (OOD) inputs is critical for deploying vision-language models in open-world settings. However, the lack of labeled negatives in zero-shot OOD detection necessitates proxy signals that remain effective under distribution shift. Existing negative-label methods rely on a fixed set of textual proxies, which (i) sparsely sample the semantic space beyond in-distribution (ID) classes and (ii) remain static while only visual features drift, leading to cross-modal misalignment and unstable predictions. In this paper, we propose CoEvo, a training- and annotation-free test-time framework that performs bidirectional, sample-conditioned adaptation of both textual and visual proxies. Specifically, CoEvo introduces a proxy-aligned co-evolution mechanism to maintain two evolving proxy caches, which dynamically mines contextual textual negatives guided by test images and iteratively refines visual proxies, progressively realigning cross-modal similarities and enlarging local OOD margins. Finally, we dynamically re-weight the contributions of dual-modal proxies to obtain a calibrated OOD score that is robust to distribution shift. Extensive experiments on standard benchmarks demonstrate that CoEvo achieves state-of-the-art performance, improving AUROC by 1.33% and reducing FPR95 by 45.98% on ImageNet-1K compared to strong negative-label baselines.
Abstract:Large language models (LLMs) equipped with retrieval--the Retrieval-Augmented Generation (RAG) paradigm--should combine their parametric knowledge with external evidence, yet in practice they often hallucinate, over-trust noisy snippets, or ignore vital context. We introduce TCR (Transparent Conflict Resolution), a plug-and-play framework that makes this decision process observable and controllable. TCR (i) disentangles semantic match and factual consistency via dual contrastive encoders, (ii) estimates self-answerability to gauge confidence in internal memory, and (iii) feeds the three scalar signals to the generator through a lightweight soft-prompt with SNR-based weighting. Across seven benchmarks TCR improves conflict detection (+5-18 F1), raises knowledge-gap recovery by +21.4 pp and cuts misleading-context overrides by -29.3 pp, while adding only 0.3% parameters. The signals align with human judgements and expose temporal decision patterns.
Abstract:Machine unlearning aims to forget sensitive knowledge from Large Language Models (LLMs) while maintaining general utility. However, existing approaches typically treat all tokens in a response indiscriminately and enforce uncertainty over the entire vocabulary. This global treatment results in unnecessary utility degradation and extends optimization to content-agnostic regions. To address these limitations, we propose PALU (Prefix-Aware Localized Unlearning), a framework driven by a local entropy maximization objective across both temporal and vocabulary dimensions. PALU reveals that (i) suppressing the sensitive prefix alone is sufficient to sever the causal generation link, and (ii) flattening only the top-$k$ logits is adequate to maximize uncertainty in the critical subspace. These findings allow PALU to avoid redundant optimization across the full vocabulary and parameter space while minimizing collateral damage to general model performance. Extensive experiments validate that PALU achieves superior forgetting efficacy and utility preservation compared to state-of-the-art baselines.
Abstract:Anomaly detection is crucial in industrial product quality inspection. Failing to detect tiny defects often leads to serious consequences. Existing methods face a structure-semantics trade-off: structure-oriented models (such as frequency-based filters) are noise-sensitive, while semantics-oriented models (such as CLIP-based encoders) often miss fine details. To address this, we propose HarmoniAD, a frequency-guided dual-branch framework. Features are first extracted by the CLIP image encoder, then transformed into the frequency domain, and finally decoupled into high- and low-frequency paths for complementary modeling of structure and semantics. The high-frequency branch is equipped with a fine-grained structural attention module (FSAM) to enhance textures and edges for detecting small anomalies, while the low-frequency branch uses a global structural context module (GSCM) to capture long-range dependencies and preserve semantic consistency. Together, these branches balance fine detail and global semantics. HarmoniAD further adopts a multi-class joint training strategy, and experiments on MVTec-AD, VisA, and BTAD show state-of-the-art performance with both sensitivity and robustness.
Abstract:Pose-guided human image generation is limited by incomplete textures from single reference views and the absence of explicit cross-view interaction. We present jointly conditioned diffusion model (JCDM), a jointly conditioned diffusion framework that exploits multi-view priors. The appearance prior module (APM) infers a holistic identity preserving prior from incomplete references, and the joint conditional injection (JCI) mechanism fuses multi-view cues and injects shared conditioning into the denoising backbone to align identity, color, and texture across poses. JCDM supports a variable number of reference views and integrates with standard diffusion backbones with minimal and targeted architectural modifications. Experiments demonstrate state of the art fidelity and cross-view consistency.
Abstract:Contrastive vision-language models like CLIP have achieved impressive results in image-text retrieval by aligning image and text representations in a shared embedding space. However, these models often treat text as flat sequences, limiting their ability to handle complex, compositional, and long-form descriptions. In particular, they fail to capture two essential properties of language: semantic hierarchy, which reflects the multi-level compositional structure of text, and semantic monotonicity, where richer descriptions should result in stronger alignment with visual content.To address these limitations, we propose HiMo-CLIP, a representation-level framework that enhances CLIP-style models without modifying the encoder architecture. HiMo-CLIP introduces two key components: a hierarchical decomposition (HiDe) module that extracts latent semantic components from long-form text via in-batch PCA, enabling flexible, batch-aware alignment across different semantic granularities, and a monotonicity-aware contrastive loss (MoLo) that jointly aligns global and component-level representations, encouraging the model to internalize semantic ordering and alignment strength as a function of textual completeness.These components work in concert to produce structured, cognitively-aligned cross-modal representations. Experiments on multiple image-text retrieval benchmarks show that HiMo-CLIP consistently outperforms strong baselines, particularly under long or compositional descriptions. The code is available at https://github.com/UnicomAI/HiMo-CLIP.
Abstract:Recent text-to-image models have revolutionized image generation, but they still struggle with maintaining concept consistency across generated images. While existing works focus on character consistency, they often overlook the crucial role of scenes in storytelling, which restricts their creativity in practice. This paper introduces scene-oriented story generation, addressing two key challenges: (i) scene planning, where current methods fail to ensure scene-level narrative coherence by relying solely on text descriptions, and (ii) scene consistency, which remains largely unexplored in terms of maintaining scene consistency across multiple stories. We propose SceneDecorator, a training-free framework that employs VLM-Guided Scene Planning to ensure narrative coherence across different scenes in a ``global-to-local'' manner, and Long-Term Scene-Sharing Attention to maintain long-term scene consistency and subject diversity across generated stories. Extensive experiments demonstrate the superior performance of SceneDecorator, highlighting its potential to unleash creativity in the fields of arts, films, and games.
Abstract:In this paper, we propose \textbf{CharacterShot}, a controllable and consistent 4D character animation framework that enables any individual designer to create dynamic 3D characters (i.e., 4D character animation) from a single reference character image and a 2D pose sequence. We begin by pretraining a powerful 2D character animation model based on a cutting-edge DiT-based image-to-video model, which allows for any 2D pose sequnce as controllable signal. We then lift the animation model from 2D to 3D through introducing dual-attention module together with camera prior to generate multi-view videos with spatial-temporal and spatial-view consistency. Finally, we employ a novel neighbor-constrained 4D gaussian splatting optimization on these multi-view videos, resulting in continuous and stable 4D character representations. Moreover, to improve character-centric performance, we construct a large-scale dataset Character4D, containing 13,115 unique characters with diverse appearances and motions, rendered from multiple viewpoints. Extensive experiments on our newly constructed benchmark, CharacterBench, demonstrate that our approach outperforms current state-of-the-art methods. Code, models, and datasets will be publicly available at https://github.com/Jeoyal/CharacterShot.
Abstract:Although significant advancements have been achieved in the progress of keypoint-guided Text-to-Image diffusion models, existing mainstream keypoint-guided models encounter challenges in controlling the generation of more general non-rigid objects beyond humans (e.g., animals). Moreover, it is difficult to generate multiple overlapping humans and animals based on keypoint controls solely. These challenges arise from two main aspects: the inherent limitations of existing controllable methods and the lack of suitable datasets. First, we design a DiT-based framework, named UniMC, to explore unifying controllable multi-class image generation. UniMC integrates instance- and keypoint-level conditions into compact tokens, incorporating attributes such as class, bounding box, and keypoint coordinates. This approach overcomes the limitations of previous methods that struggled to distinguish instances and classes due to their reliance on skeleton images as conditions. Second, we propose HAIG-2.9M, a large-scale, high-quality, and diverse dataset designed for keypoint-guided human and animal image generation. HAIG-2.9M includes 786K images with 2.9M instances. This dataset features extensive annotations such as keypoints, bounding boxes, and fine-grained captions for both humans and animals, along with rigorous manual inspection to ensure annotation accuracy. Extensive experiments demonstrate the high quality of HAIG-2.9M and the effectiveness of UniMC, particularly in heavy occlusions and multi-class scenarios.
Abstract:While recent advances in image editing have enabled impressive visual synthesis capabilities, current methods remain constrained by explicit textual instructions and limited editing operations, lacking deep comprehension of implicit user intentions and contextual reasoning. In this work, we introduce a new image editing paradigm: reasoning-guided generative editing, which synthesizes images based on complex, multi-faceted textual queries accepting world knowledge and intention inference. To facilitate this task, we first construct a comprehensive dataset featuring over 1,000 image-instruction-edit triples that incorporate rich reasoning contexts and real-world knowledge. We then propose R-Genie: a reasoning-guided generative image editor, which synergizes the generation power of diffusion models with advanced reasoning capabilities of multimodal large language models. R-Genie incorporates a reasoning-attention mechanism to bridge linguistic understanding with visual synthesis, enabling it to handle intricate editing requests involving abstract user intentions and contextual reasoning relations. Extensive experimental results validate that R-Genie can equip diffusion models with advanced reasoning-based editing capabilities, unlocking new potentials for intelligent image synthesis.