Abstract:Reconstructing textureless areas in MVS poses challenges due to the absence of reliable pixel correspondences within fixed patch. Although certain methods employ patch deformation to expand the receptive field, their patches mistakenly skip depth edges to calculate areas with depth discontinuity, thereby causing ambiguity. Consequently, we introduce Multi-granularity Segmentation Prior Multi-View Stereo (MSP-MVS). Specifically, we first propose multi-granularity segmentation prior by integrating multi-granularity depth edges to restrict patch deformation within homogeneous areas. Moreover, we present anchor equidistribution that bring deformed patches with more uniformly distributed anchors to ensure an adequate coverage of their own homogeneous areas. Furthermore, we introduce iterative local search optimization to represent larger patch with sparse representative candidates, significantly boosting the expressive capacity for each patch. The state-of-the-art results on ETH3D and Tanks & Temples benchmarks demonstrate the effectiveness and robust generalization ability of our proposed method.
Abstract:In this paper, we introduce Segmentation-Driven Deformation Multi-View Stereo (SD-MVS), a method that can effectively tackle challenges in 3D reconstruction of textureless areas. We are the first to adopt the Segment Anything Model (SAM) to distinguish semantic instances in scenes and further leverage these constraints for pixelwise patch deformation on both matching cost and propagation. Concurrently, we propose a unique refinement strategy that combines spherical coordinates and gradient descent on normals and pixelwise search interval on depths, significantly improving the completeness of reconstructed 3D model. Furthermore, we adopt the Expectation-Maximization (EM) algorithm to alternately optimize the aggregate matching cost and hyperparameters, effectively mitigating the problem of parameters being excessively dependent on empirical tuning. Evaluations on the ETH3D high-resolution multi-view stereo benchmark and the Tanks and Temples dataset demonstrate that our method can achieve state-of-the-art results with less time consumption.
Abstract:The reconstruction of textureless areas has long been a challenging problem in MVS due to lack of reliable pixel correspondences between images. In this paper, we propose the Textureless-aware Segmentation And Correlative Refinement guided Multi-View Stereo (TSAR-MVS), a novel method that effectively tackles challenges posed by textureless areas in 3D reconstruction through filtering, refinement and segmentation. First, we implement joint hypothesis filtering, a technique that merges a confidence estimator with a disparity discontinuity detector to eliminate incorrect depth estimations. Second, to spread the pixels with confident depth, we introduce a iterative correlation refinement strategy that leverages RANSAC to generate superpixels, succeeded by a median filter for broadening the influence of accurately determined pixels.Finally, we present a textureless-aware segmentation method that leverages edge detection and line detection for accurately identify large textureless regions to be fitted using 3D planes. Experiments on extensive datasets demonstrate that our method significantly outperforms most non-learning methods and exhibits robustness to textureless areas while preserving fine details.