Abstract:Diffusion models have achieved cutting-edge performance in image generation. However, their lengthy denoising process and computationally intensive score estimation network impede their scalability in low-latency and resource-constrained scenarios. Post-training quantization (PTQ) compresses and accelerates diffusion models without retraining, but it inevitably introduces additional quantization noise, resulting in mean and variance deviations. In this work, we propose D2-DPM, a dual denoising mechanism aimed at precisely mitigating the adverse effects of quantization noise on the noise estimation network. Specifically, we first unravel the impact of quantization noise on the sampling equation into two components: the mean deviation and the variance deviation. The mean deviation alters the drift coefficient of the sampling equation, influencing the trajectory trend, while the variance deviation magnifies the diffusion coefficient, impacting the convergence of the sampling trajectory. The proposed D2-DPM is thus devised to denoise the quantization noise at each time step, and then denoise the noisy sample through the inverse diffusion iterations. Experimental results demonstrate that D2-DPM achieves superior generation quality, yielding a 1.42 lower FID than the full-precision model while achieving 3.99x compression and 11.67x bit-operation acceleration.
Abstract:Efficient multimodal large language models (EMLLMs), in contrast to multimodal large language models (MLLMs), reduce model size and computational costs and are often deployed on resource-constrained devices. However, due to data privacy concerns, existing open-source EMLLMs rarely have access to private domain-specific data during the pre-training process, making them difficult to directly apply in device-specific domains, such as certain business scenarios. To address this weakness, this paper focuses on the efficient adaptation of EMLLMs to private domains, specifically in two areas: 1) how to reduce data requirements, and 2) how to avoid parameter fine-tuning. Specifically, we propose a tun\textbf{\underline{I}}ng-free, a\textbf{\underline{D}}aptiv\textbf{\underline{E}}, univers\textbf{\underline{AL}} \textbf{\underline{Prompt}} Optimization Framework, abbreviated as \textit{\textbf{\ourmethod{}}} which consists of two stages: 1) Predefined Prompt, based on the reinforcement searching strategy, generate a prompt optimization strategy tree to acquire optimization priors; 2) Prompt Reflection initializes the prompt based on optimization priors, followed by self-reflection to further search and refine the prompt. By doing so, \ourmethod{} elegantly generates the ``ideal prompts'' for processing private domain-specific data. Note that our method requires no parameter fine-tuning and only a small amount of data to quickly adapt to the data distribution of private data. Extensive experiments across multiple tasks demonstrate that our proposed \ourmethod{} significantly improves both efficiency and performance compared to baselines.
Abstract:A Cram\'er-Rao bound (CRB) optimization framework for near-field sensing (NISE) with continuous-aperture arrays (CAPAs) is proposed. In contrast to conventional spatially discrete arrays (SPDAs), CAPAs emit electromagnetic (EM) probing signals through continuous source currents for target sensing, thereby exploiting the full spatial degrees of freedom (DoFs). The maximum likelihood estimation (MLE) method for estimating target locations in the near-field region is developed. To evaluate the NISE performance with CAPAs, the CRB for estimating target locations is derived based on continuous transmit and receive array responses of CAPAs. Subsequently, a CRB minimization problem is formulated to optimize the continuous source current of CAPAs. This results in a non-convex, integral-based functional optimization problem. To address this challenge, the optimal structure of the source current is derived and proven to be spanned by a series of basis functions determined by the system geometry. To solve the CRB minimization problem, a low-complexity subspace manifold gradient descent (SMGD) method is proposed, leveraging the derived optimal structure of the source current. Our simulation results validate the effectiveness of the proposed SMGD method and further demonstrate that i)~the proposed SMGD method can effectively solve the CRB minimization problem with reduced computational complexity, and ii)~CAPA achieves a tenfold improvement in sensing performance compared to its SPDA counterpart, due to full exploitation of spatial DoFs.
Abstract:As key elements within the central dogma, DNA, RNA, and proteins play crucial roles in maintaining life by guaranteeing accurate genetic expression and implementation. Although research on these molecules has profoundly impacted fields like medicine, agriculture, and industry, the diversity of machine learning approaches-from traditional statistical methods to deep learning models and large language models-poses challenges for researchers in choosing the most suitable models for specific tasks, especially for cross-omics and multi-omics tasks due to the lack of comprehensive benchmarks. To address this, we introduce the first comprehensive multi-omics benchmark COMET (Benchmark for Biological COmprehensive Multi-omics Evaluation Tasks and Language Models), designed to evaluate models across single-omics, cross-omics, and multi-omics tasks. First, we curate and develop a diverse collection of downstream tasks and datasets covering key structural and functional aspects in DNA, RNA, and proteins, including tasks that span multiple omics levels. Then, we evaluate existing foundational language models for DNA, RNA, and proteins, as well as the newly proposed multi-omics method, offering valuable insights into their performance in integrating and analyzing data from different biological modalities. This benchmark aims to define critical issues in multi-omics research and guide future directions, ultimately promoting advancements in understanding biological processes through integrated and different omics data analysis.
Abstract:As a fundamental vision task, stereo matching has made remarkable progress. While recent iterative optimization-based methods have achieved promising performance, their feature extraction capabilities still have room for improvement. Inspired by the ability of vision foundation models (VFMs) to extract general representations, in this work, we propose AIO-Stereo which can flexibly select and transfer knowledge from multiple heterogeneous VFMs to a single stereo matching model. To better reconcile features between heterogeneous VFMs and the stereo matching model and fully exploit prior knowledge from VFMs, we proposed a dual-level feature utilization mechanism that aligns heterogeneous features and transfers multi-level knowledge. Based on the mechanism, a dual-level selective knowledge transfer module is designed to selectively transfer knowledge and integrate the advantages of multiple VFMs. Experimental results show that AIO-Stereo achieves start-of-the-art performance on multiple datasets and ranks $1^{st}$ on the Middlebury dataset and outperforms all the published work on the ETH3D benchmark.
Abstract:With the rise of the ``metaverse'' and the rapid development of games, it has become more and more critical to reconstruct characters in the virtual world faithfully. The immersive experience is one of the most central themes of the ``metaverse'', while the reducibility of the avatar is the crucial point. Meanwhile, the game is the carrier of the metaverse, in which players can freely edit the facial appearance of the game character. In this paper, we propose a simple but powerful cross-domain framework that can reconstruct fine-grained 3D game characters from single-view images in an end-to-end manner. Different from the previous methods, which do not resolve the cross-domain gap, we propose an effective regressor that can greatly reduce the discrepancy between the real-world domain and the game domain. To figure out the drawbacks of no ground truth, our unsupervised framework has accomplished the knowledge transfer of the target domain. Additionally, an innovative contrastive loss is proposed to solve the instance-wise disparity, which keeps the person-specific details of the reconstructed character. In contrast, an auxiliary 3D identity-aware extractor is activated to make the results of our model more impeccable. Then a large set of physically meaningful facial parameters is generated robustly and exquisitely. Experiments demonstrate that our method yields state-of-the-art performance in 3D game character reconstruction.
Abstract:Predicting roll call votes through modeling political actors has emerged as a focus in quantitative political science and computer science. Widely used embedding-based methods generate vectors for legislators from diverse data sets to predict legislative behaviors. However, these methods often contend with challenges such as the need for manually predefined features, reliance on extensive training data, and a lack of interpretability. Achieving more interpretable predictions under flexible conditions remains an unresolved issue. This paper introduces the Political Actor Agent (PAA), a novel agent-based framework that utilizes Large Language Models to overcome these limitations. By employing role-playing architectures and simulating legislative system, PAA provides a scalable and interpretable paradigm for predicting roll-call votes. Our approach not only enhances the accuracy of predictions but also offers multi-view, human-understandable decision reasoning, providing new insights into political actor behaviors. We conducted comprehensive experiments using voting records from the 117-118th U.S. House of Representatives, validating the superior performance and interpretability of PAA. This study not only demonstrates PAA's effectiveness but also its potential in political science research.
Abstract:In the rapidly evolving domain of Artificial Intelligence (AI), the complex interaction between innovation and regulation has become an emerging focus of our society. Despite tremendous advancements in AI's capabilities to excel in specific tasks and contribute to diverse sectors, establishing a high degree of trust in AI-generated outputs and decisions necessitates meticulous caution and continuous oversight. A broad spectrum of stakeholders, including governmental bodies, private sector corporations, academic institutions, and individuals, have launched significant initiatives. These efforts include developing ethical guidelines for AI and engaging in vibrant discussions on AI ethics, both among AI practitioners and within the broader society. This article thoroughly analyzes the ground-breaking AI regulatory framework proposed by the European Union. It delves into the fundamental ethical principles of safety, transparency, non-discrimination, traceability, and environmental sustainability for AI developments and deployments. Considering the technical efforts and strategies undertaken by academics and industry to uphold these principles, we explore the synergies and conflicts among the five ethical principles. Through this lens, work presents a forward-looking perspective on the future of AI regulations, advocating for a harmonized approach that safeguards societal values while encouraging technological advancement.
Abstract:Terahertz (THz) integrated sensing and communication (ISAC) holds the potential to achieve high data rates and high-resolution sensing. Reconstructing the propagation environment is a vital step for THz ISAC, as it enhances the predictability of the communication channel to reduce communication overhead. In this letter, we propose an environment reconstruction methodology (ERM) merging reflectors of multi-targets based on THz single-sided channel small-scale characteristics. In this method, the inclination and position of tiny reflection faces of one single multi-path (MPC) are initially detected by double-triangle equations based on Snells law and geometry properties. Then, those reflection faces of multi-target MPCs, which are filtrated as available and one-order reflection MPCs, are globally merged to accurately reconstruct the entire propagation environment. The ERM is capable of operating with only small-scale parameters of receiving MPC. Subsequently, we validate our ERM through two experiments: bi-static ray-tracing simulations in an L-shaped room and channel measurements in an urban macrocellular (UMa) scenario in THz bands. The validation results demonstrate a small deviation of 0.03 m between the sensing outcomes and the predefined reflectors in the ray-tracing simulation and a small sensing root-mean-square error of 1.28 m and 0.45 m in line-of-sight and non-line-of-sight cases respectively based on channel measurements. Overall, this work is valuable for designing THz communication systems and facilitating the application of THz ISAC communication techniques.
Abstract:Evaluating the quality of synthesized images remains a significant challenge in the development of text-to-image (T2I) generation. Most existing studies in this area primarily focus on evaluating text-image alignment, image quality, and object composition capabilities, with comparatively fewer studies addressing the evaluation of the factuality of T2I models, particularly when the concepts involved are knowledge-intensive. To mitigate this gap, we present T2I-FactualBench in this work - the largest benchmark to date in terms of the number of concepts and prompts specifically designed to evaluate the factuality of knowledge-intensive concept generation. T2I-FactualBench consists of a three-tiered knowledge-intensive text-to-image generation framework, ranging from the basic memorization of individual knowledge concepts to the more complex composition of multiple knowledge concepts. We further introduce a multi-round visual question answering (VQA) based evaluation framework to assess the factuality of three-tiered knowledge-intensive text-to-image generation tasks. Experiments on T2I-FactualBench indicate that current state-of-the-art (SOTA) T2I models still leave significant room for improvement.