Zhejiang University
Abstract:Diffusion models have achieved cutting-edge performance in image generation. However, their lengthy denoising process and computationally intensive score estimation network impede their scalability in low-latency and resource-constrained scenarios. Post-training quantization (PTQ) compresses and accelerates diffusion models without retraining, but it inevitably introduces additional quantization noise, resulting in mean and variance deviations. In this work, we propose D2-DPM, a dual denoising mechanism aimed at precisely mitigating the adverse effects of quantization noise on the noise estimation network. Specifically, we first unravel the impact of quantization noise on the sampling equation into two components: the mean deviation and the variance deviation. The mean deviation alters the drift coefficient of the sampling equation, influencing the trajectory trend, while the variance deviation magnifies the diffusion coefficient, impacting the convergence of the sampling trajectory. The proposed D2-DPM is thus devised to denoise the quantization noise at each time step, and then denoise the noisy sample through the inverse diffusion iterations. Experimental results demonstrate that D2-DPM achieves superior generation quality, yielding a 1.42 lower FID than the full-precision model while achieving 3.99x compression and 11.67x bit-operation acceleration.
Abstract:Trajectory generation has garnered significant attention from researchers in the field of spatio-temporal analysis, as it can generate substantial synthesized human mobility trajectories that enhance user privacy and alleviate data scarcity. However, existing trajectory generation methods often focus on improving trajectory generation quality from a singular perspective, lacking a comprehensive semantic understanding across various scales. Consequently, we are inspired to develop a HOlistic SEmantic Representation (HOSER) framework for navigational trajectory generation. Given an origin-and-destination (OD) pair and the starting time point of a latent trajectory, we first propose a Road Network Encoder to expand the receptive field of road- and zone-level semantics. Second, we design a Multi-Granularity Trajectory Encoder to integrate the spatio-temporal semantics of the generated trajectory at both the point and trajectory levels. Finally, we employ a Destination-Oriented Navigator to seamlessly integrate destination-oriented guidance. Extensive experiments on three real-world datasets demonstrate that HOSER outperforms state-of-the-art baselines by a significant margin. Moreover, the model's performance in few-shot learning and zero-shot learning scenarios further verifies the effectiveness of our holistic semantic representation.
Abstract:Model merging has attracted significant attention as a powerful paradigm for model reuse, facilitating the integration of task-specific models into a singular, versatile framework endowed with multifarious capabilities. Previous studies, predominantly utilizing methods such as Weight Average (WA), have shown that model merging can effectively leverage pretrained models without the need for laborious retraining. However, the inherent heterogeneity among models poses a substantial constraint on its applicability, particularly when confronted with discrepancies in model architectures. To overcome this challenge, we propose an innovative model merging framework designed for heterogeneous models, encompassing both depth and width heterogeneity. To address depth heterogeneity, we introduce a layer alignment strategy that harmonizes model layers by segmenting deeper models, treating consecutive layers with similar representations as a cohesive segment, thus enabling the seamless merging of models with differing layer depths. For width heterogeneity, we propose a novel elastic neuron zipping algorithm that projects the weights from models of varying widths onto a common dimensional space, eliminating the need for identical widths. Extensive experiments validate the efficacy of these proposed methods, demonstrating that the merging of structurally heterogeneous models can achieve performance levels comparable to those of homogeneous merging, across both vision and NLP tasks. Our code is publicly available at https://github.com/zju-vipa/training_free_heterogeneous_model_merging.
Abstract:Pathology images are considered the "gold standard" for cancer diagnosis and treatment, with gigapixel images providing extensive tissue and cellular information. Existing methods fail to simultaneously extract global structural and local detail f
Abstract:Pathological diagnosis is vital for determining disease characteristics, guiding treatment, and assessing prognosis, relying heavily on detailed, multi-scale analysis of high-resolution whole slide images (WSI). However, traditional pure vision models face challenges of redundant feature extraction, whereas existing large vision-language models (LVLMs) are limited by input resolution constraints, hindering their efficiency and accuracy. To overcome these issues, we propose two innovative strategies: the mixed task-guided feature enhancement, which directs feature extraction toward lesion-related details across scales, and the prompt-guided detail feature completion, which integrates coarse- and fine-grained features from WSI based on specific prompts without compromising inference speed. Leveraging a comprehensive dataset of 490,000 samples from diverse pathology tasks-including cancer detection, grading, vascular and neural invasion identification, and so on-we trained the pathology-specialized LVLM, OmniPath. Extensive experiments demonstrate that this model significantly outperforms existing methods in diagnostic accuracy and efficiency, offering an interactive, clinically aligned approach for auxiliary diagnosis in a wide range of pathology applications.
Abstract:Finetuning-free personalized image generation can synthesize customized images without test-time finetuning, attracting wide research interest owing to its high efficiency. Current finetuning-free methods simply adopt a single training stage with a simple image reconstruction task, and they typically generate low-quality images inconsistent with the reference images during test-time. To mitigate this problem, inspired by the recent DPO (i.e., direct preference optimization) technique, this work proposes an additional training stage to improve the pre-trained personalized generation models. However, traditional DPO only determines the overall superiority or inferiority of two samples, which is not suitable for personalized image generation because the generated images are commonly inconsistent with the reference images only in some local image patches. To tackle this problem, this work proposes PatchDPO that estimates the quality of image patches within each generated image and accordingly trains the model. To this end, PatchDPO first leverages the pre-trained vision model with a proposed self-supervised training method to estimate the patch quality. Next, PatchDPO adopts a weighted training approach to train the model with the estimated patch quality, which rewards the image patches with high quality while penalizing the image patches with low quality. Experiment results demonstrate that PatchDPO significantly improves the performance of multiple pre-trained personalized generation models, and achieves state-of-the-art performance on both single-object and multi-object personalized image generation. Our code is available at https://github.com/hqhQAQ/PatchDPO.
Abstract:Deep neural networks (DNNs) have numerous applications across various domains. Several optimization techniques, such as ResNet and SENet, have been proposed to improve model accuracy. These techniques improve the model performance by adjusting or calibrating feature responses according to a uniform standard. However, they lack the discriminative calibration for different features, thereby introducing limitations in the model output. Therefore, we propose a method that discriminatively calibrates feature responses. The preliminary experimental results indicate that the neural feature response follows a Gaussian distribution. Consequently, we compute confidence values by employing the Gaussian probability density function, and then integrate these values with the original response values. The objective of this integration is to improve the feature discriminability of the neural feature response. Based on the calibration values, we propose a plugin-based calibration module incorporated into a modified ResNet architecture, termed Response Calibration Networks (ResCNet). Extensive experiments on datasets like CIFAR-10, CIFAR-100, SVHN, and ImageNet demonstrate the effectiveness of the proposed approach. The developed code is publicly available at https://github.com/tcmyxc/ResCNet.
Abstract:Video captioning generate a sentence that describes the video content. Existing methods always require a number of captions (\eg, 10 or 20) per video to train the model, which is quite costly. In this work, we explore the possibility of using only one or very few ground-truth sentences, and introduce a new task named few-supervised video captioning. Specifically, we propose a few-supervised video captioning framework that consists of lexically constrained pseudo-labeling module and keyword-refined captioning module. Unlike the random sampling in natural language processing that may cause invalid modifications (\ie, edit words), the former module guides the model to edit words using some actions (\eg, copy, replace, insert, and delete) by a pretrained token-level classifier, and then fine-tunes candidate sentences by a pretrained language model. Meanwhile, the former employs the repetition penalized sampling to encourage the model to yield concise pseudo-labeled sentences with less repetition, and selects the most relevant sentences upon a pretrained video-text model. Moreover, to keep semantic consistency between pseudo-labeled sentences and video content, we develop the transformer-based keyword refiner with the video-keyword gated fusion strategy to emphasize more on relevant words. Extensive experiments on several benchmarks demonstrate the advantages of the proposed approach in both few-supervised and fully-supervised scenarios. The code implementation is available at https://github.com/mlvccn/PKG_VidCap
Abstract:Graph neural networks (GNNs) have attracted considerable attention due to their diverse applications. However, the scarcity and quality limitations of graph data present challenges to their training process in practical settings. To facilitate the development of effective GNNs, companies and researchers often seek external collaboration. Yet, directly sharing data raises privacy concerns, motivating data owners to train GNNs on their private graphs and share the trained models. Unfortunately, these models may still inadvertently disclose sensitive properties of their training graphs (e.g., average default rate in a transaction network), leading to severe consequences for data owners. In this work, we study graph property inference attack to identify the risk of sensitive property information leakage from shared models. Existing approaches typically train numerous shadow models for developing such attack, which is computationally intensive and impractical. To address this issue, we propose an efficient graph property inference attack by leveraging model approximation techniques. Our method only requires training a small set of models on graphs, while generating a sufficient number of approximated shadow models for attacks. To enhance diversity while reducing errors in the approximated models, we apply edit distance to quantify the diversity within a group of approximated models and introduce a theoretically guaranteed criterion to evaluate each model's error. Subsequently, we propose a novel selection mechanism to ensure that the retained approximated models achieve high diversity and low error. Extensive experiments across six real-world scenarios demonstrate our method's substantial improvement, with average increases of 2.7% in attack accuracy and 4.1% in ROC-AUC, while being 6.5$\times$ faster compared to the best baseline.
Abstract:Concept activation vector (CAV) has attracted broad research interest in explainable AI, by elegantly attributing model predictions to specific concepts. However, the training of CAV often necessitates a large number of high-quality images, which are expensive to curate and thus limited to a predefined set of concepts. To address this issue, we propose Language-Guided CAV (LG-CAV) to harness the abundant concept knowledge within the certain pre-trained vision-language models (e.g., CLIP). This method allows training any CAV without labeled data, by utilizing the corresponding concept descriptions as guidance. To bridge the gap between vision-language model and the target model, we calculate the activation values of concept descriptions on a common pool of images (probe images) with vision-language model and utilize them as language guidance to train the LG-CAV. Furthermore, after training high-quality LG-CAVs related to all the predicted classes in the target model, we propose the activation sample reweighting (ASR), serving as a model correction technique, to improve the performance of the target model in return. Experiments on four datasets across nine architectures demonstrate that LG-CAV achieves significantly superior quality to previous CAV methods given any concept, and our model correction method achieves state-of-the-art performance compared to existing concept-based methods. Our code is available at https://github.com/hqhQAQ/LG-CAV.