Abstract:How to generate diverse, life-like, and unlimited long head/body sequences without any driving source? We argue that this under-investigated research problem is non-trivial at all, and has unique technical challenges behind it. Without semantic constraints from the driving sources, using the standard autoregressive model to generate infinitely long sequences would easily result in 1) out-of-distribution (OOD) issue due to the accumulated error, 2) insufficient diversity to produce natural and life-like motion sequences and 3) undesired periodic patterns along the time. To tackle the above challenges, we propose a systematic framework that marries the benefits of VQ-VAE and a novel token-level control policy trained with reinforcement learning using carefully designed reward functions. A high-level prior model can be easily injected on top to generate unlimited long and diverse sequences. Although we focus on no driving sources now, our framework can be generalized for controlled synthesis with explicit driving sources. Through comprehensive evaluations, we conclude that our proposed framework can address all the above-mentioned challenges and outperform other strong baselines very significantly.
Abstract:Detection of baby cries is an important part of baby monitoring and health care. Almost all existing methods use supervised SVM, CNN, or their varieties. In this work, we propose to use weakly supervised anomaly detection to detect a baby cry. In this weak supervision, we only need weak annotation if there is a cry in an audio file. We design a data mining technique using the pre-trained VGGish feature extractor and an anomaly detection network on long untrimmed audio files. The obtained datasets are used to train a simple CNN feature network for cry/non-cry classification. This CNN is then used as a feature extractor in an anomaly detection framework to achieve better cry detection performance.
Abstract:Current weakly supervised video anomaly detection algorithms mostly use multiple instance learning (MIL) or their varieties. Almost all recent approaches focus on how to select the correct snippets for training to improve the performance. They overlook or do not realize the power of video classification in boosting the performance of anomaly detection. In this paper, we study explicitly the power of video classification supervision using a BERT or LSTM. With this BERT or LSTM, CNN features of all snippets of a video can be aggregated into a single feature which can be used for video classification. This simple yet powerful video classification supervision, combined into the MIL framework, brings extraordinary performance improvement on all three major video anomaly detection datasets. Particularly it improves the mean average precision (mAP) on the XD-Violence from SOTA 78.84\% to new 82.10\%. The source code is available at https://github.com/wjtan99/BERT_Anomaly_Video_Classification.
Abstract:We propose an automatic COVID1-19 diagnosis framework from lung CT-scan slice images using double BERT feature extraction. In the first BERT feature extraction, A 3D-CNN is first used to extract CNN internal feature maps. Instead of using the global average pooling, a late BERT temporal pooing is used to aggregate the temporal information in these feature maps, followed by a classification layer. This 3D-CNN-BERT classification network is first trained on sampled fixed number of slice images from every original CT scan volume. In the second stage, the 3D-CNN-BERT embedding features are extracted on all slice images of every CT scan volume, and these features are averaged into a fixed number of segments. Then another BERT network is used to aggregate these multiple features into a single feature followed by another classification layer. The classification results of both stages are combined to generate final outputs. On the validation dataset, we achieve macro F1 score of 0.9164.
Abstract:We present the improved network architecture, data augmentation, and training strategies for the Webface track and Insightface/Glint360K track of the masked face recognition challenge of ICCV2021. One of the key goals is to have a balanced performance of masked and standard face recognition. In order to prevent the overfitting for the masked face recognition, we control the total number of masked faces by not more than 10\% of the total face recognition in the training dataset. We propose a few key changes to the face recognition network including a new stem unit, drop block, face detection and alignment using YOLO5Face, feature concatenation, a cycle cosine learning rate, etc. With this strategy, we achieve good and balanced performance for both masked and standard face recognition.
Abstract:Tremendous progress has been made on face detection in recent years using convolutional neural networks. While many face detectors use designs designated for the detection of face, we treat face detection as a general object detection task. We implement a face detector based on YOLOv5 object detector and call it YOLO5Face. We add a five-point landmark regression head into it and use the Wing loss function. We design detectors with different model sizes, from a large model to achieve the best performance, to a super small model for real-time detection on an embedded or mobile device. Experiment results on the WiderFace dataset show that our face detectors can achieve state-of-the-art performance in almost all the Easy, Medium, and Hard subsets, exceeding the more complex designated face detectors. The code is available at \url{https://www.github.com/deepcam-cn/yolov5-face}.
Abstract:Gun violence is a severe problem in the world, particularly in the United States. Computer vision methods have been studied to detect guns in surveillance video cameras or smart IP cameras and to send a real-time alert to safety personals. However, due to no public datasets, it is hard to benchmark how well such methods work in real applications. In this paper we publish a dataset with 51K annotated gun images for gun detection and other 51K cropped gun chip images for gun classification we collect from a few different sources. To our knowledge, this is the largest dataset for the study of gun detection. This dataset can be downloaded at www.linksprite.com/gun-detection-datasets. We also study to search for solutions for gun detection in embedded edge device (camera) and a gun/non-gun classification on a cloud server. This edge/cloud framework makes possible the deployment of gun detection in the real world.
Abstract:Weakly supervised semantic segmentation (WSSS) using only image-level labels can greatly reduce the annotation cost and therefore has attracted considerable research interest. However, its performance is still inferior to the fully supervised counterparts. To mitigate the performance gap, we propose a saliency guided self-attention network (SGAN) to address the WSSS problem. The introduced self-attention mechanism is able to capture rich and extensive contextual information but also may mis-spread attentions to unexpected regions. To enable this mechanism work effectively under weak supervision, we integrate class-agnostic saliency priors into the self-attention mechanism to prevent the attentions on discriminative parts from mis-spreading to the background. And meanwhile we utilize class-specific attention cues as an additional supervision for SGAN, which reduces the mis-spread of attentions in regions belonging to different foreground categories. The proposed approach is able to produce dense and accurate localization cues, by which the segmentation performance is boosted. Experiments on PASCAL VOC 2012 dataset show that the proposed approach outperforms all other state-of-the-art methods.