Yahoo! Labs
Abstract:Synthesizing visually impressive images that seamlessly align both text prompts and specific artistic styles remains a significant challenge in Text-to-Image (T2I) diffusion models. This paper introduces StyleBlend, a method designed to learn and apply style representations from a limited set of reference images, enabling content synthesis of both text-aligned and stylistically coherent. Our approach uniquely decomposes style into two components, composition and texture, each learned through different strategies. We then leverage two synthesis branches, each focusing on a corresponding style component, to facilitate effective style blending through shared features without affecting content generation. StyleBlend addresses the common issues of text misalignment and weak style representation that previous methods have struggled with. Extensive qualitative and quantitative comparisons demonstrate the superiority of our approach.
Abstract:Long-context large language models (LLMs) have recently shown strong performance in information retrieval and long-document QA. However, to tackle the most challenging intellectual problems, LLMs must reason effectively in long and complex contexts (e.g., frontier mathematical research). Studying how LLMs handle increasing reasoning complexity and context length is essential, yet existing benchmarks lack a solid basis for quantitative evaluation. Inspired by the abstraction of GSM-8K problems as computational graphs, and the ability to introduce noise by adding unnecessary nodes and edges, we develop a grade school math problem generator capable of producing arithmetic problems with infinite difficulty and context length under fine-grained control. Using our newly synthesized GSM-Infinite benchmark, we comprehensively evaluate existing LLMs. We find a consistent sigmoid decline in reasoning performance as complexity increases, along with a systematic inference scaling trend: exponentially increasing inference computation yields only linear performance gains. These findings underscore the fundamental limitations of current long-context LLMs and the key challenges in scaling reasoning capabilities. Our GSM-Infinite benchmark provides a scalable and controllable testbed for systematically studying and advancing LLM reasoning in long and complex contexts.
Abstract:Multi-agent reinforcement learning typically employs a centralized training-decentralized execution (CTDE) framework to alleviate the non-stationarity in environment. However, the partial observability during execution may lead to cumulative gap errors gathered by agents, impairing the training of effective collaborative policies. To overcome this challenge, we introduce the Double Distillation Network (DDN), which incorporates two distillation modules aimed at enhancing robust coordination and facilitating the collaboration process under constrained information. The external distillation module uses a global guiding network and a local policy network, employing distillation to reconcile the gap between global training and local execution. In addition, the internal distillation module introduces intrinsic rewards, drawn from state information, to enhance the exploration capabilities of agents. Extensive experiments demonstrate that DDN significantly improves performance across multiple scenarios.
Abstract:The Centralized Training with Decentralized Execution (CTDE) paradigm is widely used in cooperative multi-agent reinforcement learning. However, due to the representational limitations of traditional monotonic value decomposition methods, algorithms can underestimate optimal actions, leading policies to suboptimal solutions. To address this challenge, we propose Optimistic $\epsilon$-Greedy Exploration, focusing on enhancing exploration to correct value estimations. The underestimation arises from insufficient sampling of optimal actions during exploration, as our analysis indicated. We introduce an optimistic updating network to identify optimal actions and sample actions from its distribution with a probability of $\epsilon$ during exploration, increasing the selection frequency of optimal actions. Experimental results in various environments reveal that the Optimistic $\epsilon$-Greedy Exploration effectively prevents the algorithm from suboptimal solutions and significantly improves its performance compared to other algorithms.
Abstract:Recently, the field of text-guided 3D scene generation has garnered significant attention. High-quality generation that aligns with physical realism and high controllability is crucial for practical 3D scene applications. However, existing methods face fundamental limitations: (i) difficulty capturing complex relationships between multiple objects described in the text, (ii) inability to generate physically plausible scene layouts, and (iii) lack of controllability and extensibility in compositional scenes. In this paper, we introduce LayoutDreamer, a framework that leverages 3D Gaussian Splatting (3DGS) to facilitate high-quality, physically consistent compositional scene generation guided by text. Specifically, given a text prompt, we convert it into a directed scene graph and adaptively adjust the density and layout of the initial compositional 3D Gaussians. Subsequently, dynamic camera adjustments are made based on the training focal point to ensure entity-level generation quality. Finally, by extracting directed dependencies from the scene graph, we tailor physical and layout energy to ensure both realism and flexibility. Comprehensive experiments demonstrate that LayoutDreamer outperforms other compositional scene generation quality and semantic alignment methods. Specifically, it achieves state-of-the-art (SOTA) performance in the multiple objects generation metric of T3Bench.
Abstract:Visual reasoning refers to the task of solving questions about visual information. Current visual reasoning methods typically employ pre-trained vision-language model (VLM) strategies or deep neural network approaches. However, existing efforts are constrained by limited reasoning interpretability, while hindering by the phenomenon of underspecification in the question text. Additionally, the absence of fine-grained visual knowledge limits the precise understanding of subject behavior in visual reasoning tasks. To address these issues, we propose VIKSER (Visual Knowledge-Driven Self-Reinforcing Reasoning Framework). Specifically, VIKSER, trained using knowledge distilled from large language models, extracts fine-grained visual knowledge with the assistance of visual relationship detection techniques. Subsequently, VIKSER utilizes fine-grained visual knowledge to paraphrase the question with underspecification. Additionally, we design a novel prompting method called Chain-of-Evidence (CoE), which leverages the power of ``evidence for reasoning'' to endow VIKSER with interpretable reasoning capabilities. Meanwhile, the integration of self-reflection technology empowers VIKSER with the ability to learn and improve from its mistakes. Experiments conducted on widely used datasets demonstrate that VIKSER achieves new state-of-the-art (SOTA) results in relevant tasks.
Abstract:Hallucination has been a long-standing and inevitable problem that hinders the application of Large Vision-Language Models (LVLMs) in domains that require high reliability. Various methods focus on improvement depending on data annotations or training strategies, yet place less emphasis on LLM's inherent problems. To fill this gap, we delve into the attention mechanism of the decoding process in the LVLM. Intriguingly, our investigation uncovers the prevalent attention redundancy within the hierarchical architecture of the LVLM, manifesting as overextended image processing in deep layers and an overabundance of non-essential image tokens. Stemming from the observation, we thus propose MINT, a novel training-free decoding strategy, MItigating hallucinations via tokeN reducTion. Specifically, we dynamically intensify the LVLM's local perception capability by masking its attention to irrelevant image tokens. In addition, we use contrastive decoding that pushes the model to focus more on those key image regions. Our full method aims to guide the model in concentrating more on key visual elements during generation. Extensive experimental results on several popular public benchmarks show that our approach achieves a 4% improvement in mitigating hallucinations caused by distracted perception compared to original models. Meanwhile, our approach is demonstrated to make the model perceive 5% more visual points even though we reduce a suite of image tokens.
Abstract:Large language model (LLM) inference workload dominates a wide variety of modern AI applications, ranging from multi-turn conversation to document analysis. Balancing fairness and efficiency is critical for managing diverse client workloads with varying prefix patterns. Unfortunately, existing fair scheduling algorithms for LLM serving, such as Virtual Token Counter (VTC), fail to take prefix locality into consideration and thus suffer from poor performance. On the other hand, locality-aware scheduling algorithms in existing LLM serving frameworks tend to maximize the prefix cache hit rate without considering fair sharing among clients. This paper introduces the first locality-aware fair scheduling algorithm, Deficit Longest Prefix Match (DLPM), which can maintain a high degree of prefix locality with a fairness guarantee. We also introduce a novel algorithm, Double Deficit LPM (D$^2$LPM), extending DLPM for the distributed setup that can find a balance point among fairness, locality, and load-balancing. Our extensive evaluation demonstrates the superior performance of DLPM and D$^2$LPM in ensuring fairness while maintaining high throughput (up to 2.87$\times$ higher than VTC) and low per-client (up to 7.18$\times$ lower than state-of-the-art distributed LLM serving system) latency.
Abstract:Automated chest radiographs interpretation requires both accurate disease classification and detailed radiology report generation, presenting a significant challenge in the clinical workflow. Current approaches either focus on classification accuracy at the expense of interpretability or generate detailed but potentially unreliable reports through image captioning techniques. In this study, we present RadAlign, a novel framework that combines the predictive accuracy of vision-language models (VLMs) with the reasoning capabilities of large language models (LLMs). Inspired by the radiologist's workflow, RadAlign first employs a specialized VLM to align visual features with key medical concepts, achieving superior disease classification with an average AUC of 0.885 across multiple diseases. These recognized medical conditions, represented as text-based concepts in the aligned visual-language space, are then used to prompt LLM-based report generation. Enhanced by a retrieval-augmented generation mechanism that grounds outputs in similar historical cases, RadAlign delivers superior report quality with a GREEN score of 0.678, outperforming state-of-the-art methods' 0.634. Our framework maintains strong clinical interpretability while reducing hallucinations, advancing automated medical imaging and report analysis through integrated predictive and generative AI. Code is available at https://github.com/difeigu/RadAlign.
Abstract:This study addresses the critical need for enhanced situational awareness in autonomous driving (AD) by leveraging the contextual reasoning capabilities of large language models (LLMs). Unlike traditional perception systems that rely on rigid, label-based annotations, it integrates real-time, multimodal sensor data into a unified, LLMs-readable knowledge base, enabling LLMs to dynamically understand and respond to complex driving environments. To overcome the inherent latency and modality limitations of LLMs, a proactive Retrieval-Augmented Generation (RAG) is designed for AD, combined with a chain-of-thought prompting mechanism, ensuring rapid and context-rich understanding. Experimental results using real-world Vehicle-to-everything (V2X) datasets demonstrate significant improvements in perception and prediction performance, highlighting the potential of this framework to enhance safety, adaptability, and decision-making in next-generation AD systems.