Abstract:The degraded performance and group unfairness caused by confounding sensitive attributes in rumor detection remains relatively unexplored. To address this, we propose a two-step framework. Initially, it identifies confounding sensitive attributes that limit rumor detection performance and cause unfairness across groups. Subsequently, we aim to learn equally informative representations through invariant learning. Our method considers diverse sets of groups without sensitive attribute annotations. Experiments show our method easily integrates with existing rumor detectors, significantly improving both their detection performance and fairness.
Abstract:3D Gaussian Splatting (3DGS) has demonstrated impressive performance in scene reconstruction. However, most existing GS-based surface reconstruction methods focus on 3D objects or limited scenes. Directly applying these methods to large-scale scene reconstruction will pose challenges such as high memory costs, excessive time consumption, and lack of geometric detail, which makes it difficult to implement in practical applications. To address these issues, we propose a multi-agent collaborative fast 3DGS surface reconstruction framework based on distributed learning for large-scale surface reconstruction. Specifically, we develop local model compression (LMC) and model aggregation schemes (MAS) to achieve high-quality surface representation of large scenes while reducing GPU memory consumption. Extensive experiments on Urban3d, MegaNeRF, and BlendedMVS demonstrate that our proposed method can achieve fast and scalable high-fidelity surface reconstruction and photorealistic rendering. Our project page is available at \url{https://gyy456.github.io/CoSurfGS}.
Abstract:Scenario-based virtual testing is one of the most significant methods to test and evaluate the safety of automated driving systems (ADSs). However, it is impractical to enumerate all concrete scenarios in a logical scenario space and test them exhaustively. Recently, Black-Box Optimization (BBO) was introduced to accelerate the scenario-based test of ADSs by utilizing the historical test information to generate new test cases. However, a single optimum found by the BBO algorithm is insufficient for the purpose of a comprehensive safety evaluation of ADSs in a logical scenario. In fact, all the subspaces representing danger in the logical scenario space, rather than only the most critical concrete scenario, play a more significant role for the safety evaluation. Covering as many of the critical concrete scenarios in a logical scenario space through a limited number of tests is defined as the Black-Box Coverage (BBC) problem in this paper. We formalized this problem in a sample-based search paradigm and constructed a coverage criterion with Confusion Matrix Analysis. Furthermore, we propose LAMBDA (Latent-Action Monte-Carlo Beam Search with Density Adaption) to solve BBC problems. LAMBDA can quickly focus on critical subspaces by recursively partitioning the logical scenario space into accepted and rejected parts. Compared with its predecessor LaMCTS, LAMBDA introduces sampling density to overcome the sampling bias from optimization and Beam Search to obtain more parallelizability. Experimental results show that LAMBDA achieves state-of-the-art performance among all baselines and can reach at most 33 and 6000 times faster than Random Search to get 95% coverage of the critical areas in 2- and 5-dimensional synthetic functions, respectively. Experiments also demonstrate that LAMBDA has a promising future in the safety evaluation of ADSs in virtual tests.
Abstract:Spatial intelligence is the ability of a machine to perceive, reason, and act in three dimensions within space and time. Recent advancements in large-scale auto-regressive models have demonstrated remarkable capabilities across various reasoning tasks. However, these models often struggle with fundamental aspects of spatial reasoning, particularly in answering questions like "Where am I?" and "What will I see?". While some attempts have been done, existing approaches typically treat them as separate tasks, failing to capture their interconnected nature. In this paper, we present Generative Spatial Transformer (GST), a novel auto-regressive framework that jointly addresses spatial localization and view prediction. Our model simultaneously estimates the camera pose from a single image and predicts the view from a new camera pose, effectively bridging the gap between spatial awareness and visual prediction. The proposed innovative camera tokenization method enables the model to learn the joint distribution of 2D projections and their corresponding spatial perspectives in an auto-regressive manner. This unified training paradigm demonstrates that joint optimization of pose estimation and novel view synthesis leads to improved performance in both tasks, for the first time, highlighting the inherent relationship between spatial awareness and visual prediction.
Abstract:In recent years, Recommender Systems (RS) have witnessed a transformative shift with the advent of Large Language Models (LLMs) in the field of Natural Language Processing (NLP). Models such as GPT-3.5/4, Llama, have demonstrated unprecedented capabilities in understanding and generating human-like text. The extensive information pre-trained by these LLMs allows for the potential to capture a more profound semantic representation from different contextual information of users and items. While the great potential lies behind the thriving of LLMs, the challenge of leveraging user-item preferences from contextual information and its alignment with the improvement of Recommender Systems needs to be addressed. Believing that a better understanding of the user or item itself can be the key factor in improving recommendation performance, we conduct research on generating informative profiles using state-of-the-art LLMs. To boost the linguistic abilities of LLMs in Recommender Systems, we introduce the Prompting-Based Representation Learning Method for Recommendation (P4R). In our P4R framework, we utilize the LLM prompting strategy to create personalized item profiles. These profiles are then transformed into semantic representation spaces using a pre-trained BERT model for text embedding. Furthermore, we incorporate a Graph Convolution Network (GCN) for collaborative filtering representation. The P4R framework aligns these two embedding spaces in order to address the general recommendation tasks. In our evaluation, we compare P4R with state-of-the-art Recommender models and assess the quality of prompt-based profile generation.
Abstract:3D Gaussian Splatting (3DGS) has shown promising performance in novel view synthesis. Previous methods adapt it to obtaining surfaces of either individual 3D objects or within limited scenes. In this paper, we make the first attempt to tackle the challenging task of large-scale scene surface reconstruction. This task is particularly difficult due to the high GPU memory consumption, different levels of details for geometric representation, and noticeable inconsistencies in appearance. To this end, we propose GigaGS, the first work for high-quality surface reconstruction for large-scale scenes using 3DGS. GigaGS first applies a partitioning strategy based on the mutual visibility of spatial regions, which effectively grouping cameras for parallel processing. To enhance the quality of the surface, we also propose novel multi-view photometric and geometric consistency constraints based on Level-of-Detail representation. In doing so, our method can reconstruct detailed surface structures. Comprehensive experiments are conducted on various datasets. The consistent improvement demonstrates the superiority of GigaGS.
Abstract:In recent years, 3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities. To address these shortcomings, this paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input. We propose two innovative techniques:(1) Structured Volumetric Representation. We first arrange disorganized 3D Gaussian points as a structured form GaussianVolume. This transformation allows the capture of intricate texture details within a volume composed of a fixed number of Gaussians. To better optimize the representation of these details, we propose a unique pruning and densifying method named the Candidate Pool Strategy, enhancing detail fidelity through selective optimization. (2) Coarse-to-fine Generation Pipeline. To simplify the generation of GaussianVolume and empower the model to generate instances with detailed 3D geometry, we propose a coarse-to-fine pipeline. It initially constructs a basic geometric structure, followed by the prediction of complete Gaussian attributes. Our framework, GVGEN, demonstrates superior performance in qualitative and quantitative assessments compared to existing 3D generation methods. Simultaneously, it maintains a fast generation speed ($\sim$7 seconds), effectively striking a balance between quality and efficiency.
Abstract:In recent years, Recommender Systems(RS) have witnessed a transformative shift with the advent of Large Language Models(LLMs) in the field of Natural Language Processing(NLP). These models such as OpenAI's GPT-3.5/4, Llama from Meta, have demonstrated unprecedented capabilities in understanding and generating human-like text. This has led to a paradigm shift in the realm of personalized and explainable recommendations, as LLMs offer a versatile toolset for processing vast amounts of textual data to enhance user experiences. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey aims to analyze how RS can benefit from LLM-based methodologies. Furthermore, we describe major challenges in Personalized Explanation Generating(PEG) tasks, which are cold-start problems, unfairness and bias problems in RS.
Abstract:Developing deep learning models on tiny devices (e.g. Microcontroller units, MCUs) has attracted much attention in various embedded IoT applications. However, it is challenging to efficiently design and deploy recent advanced models (e.g. transformers) on tiny devices due to their severe hardware resource constraints. In this work, we propose TinyFormer, a framework specifically designed to develop and deploy resource-efficient transformers on MCUs. TinyFormer mainly consists of SuperNAS, SparseNAS and SparseEngine. Separately, SuperNAS aims to search for an appropriate supernet from a vast search space. SparseNAS evaluates the best sparse single-path model including transformer architecture from the identified supernet. Finally, SparseEngine efficiently deploys the searched sparse models onto MCUs. To the best of our knowledge, SparseEngine is the first deployment framework capable of performing inference of sparse models with transformer on MCUs. Evaluation results on the CIFAR-10 dataset demonstrate that TinyFormer can develop efficient transformers with an accuracy of $96.1\%$ while adhering to hardware constraints of $1$MB storage and $320$KB memory. Additionally, TinyFormer achieves significant speedups in sparse inference, up to $12.2\times$, when compared to the CMSIS-NN library. TinyFormer is believed to bring powerful transformers into TinyML scenarios and greatly expand the scope of deep learning applications.
Abstract:Autonomous vehicles are exposed to various weather during operation, which is likely to trigger the performance limitations of the perception system, leading to the safety of the intended functionality (SOTIF) problems. To efficiently generate data for testing the performance of visual perception algorithms under various weather conditions, a hierarchical-level rain image generative model, rain conditional CycleGAN (RCCycleGAN), is constructed. RCCycleGAN is based on the generative adversarial network (GAN) and can generate images of light, medium, and heavy rain. Different rain intensities are introduced as labels in conditional GAN (CGAN). Meanwhile, the model structure is optimized and the training strategy is adjusted to alleviate the problem of mode collapse. In addition, natural rain images of different intensities are collected and processed for model training and validation. Compared with the two baseline models, CycleGAN and DerainCycleGAN, the peak signal-to-noise ratio (PSNR) of RCCycleGAN on the test dataset is improved by 2.58 dB and 0.74 dB, and the structural similarity (SSIM) is improved by 18% and 8%, respectively. The ablation experiments are also carried out to validate the effectiveness of the model tuning.