Abstract:Unsupervised anomaly detection (AD) aims to train robust detection models using only normal samples, while can generalize well to unseen anomalies. Recent research focuses on a unified unsupervised AD setting in which only one model is trained for all classes, i.e., n-class-one-model paradigm. Feature-reconstruction-based methods achieve state-of-the-art performance in this scenario. However, existing methods often suffer from a lack of sufficient contextual awareness, thereby compromising the quality of the reconstruction. To address this issue, we introduce a novel Reconstruction as Sequence (RAS) method, which enhances the contextual correspondence during feature reconstruction from a sequence modeling perspective. In particular, based on the transformer technique, we integrate a specialized RASFormer block into RAS. This block enables the capture of spatial relationships among different image regions and enhances sequential dependencies throughout the reconstruction process. By incorporating the RASFormer block, our RAS method achieves superior contextual awareness capabilities, leading to remarkable performance. Experimental results show that our RAS significantly outperforms competing methods, well demonstrating the effectiveness and superiority of our method. Our code is available at https://github.com/Nothingtolose9979/RAS.
Abstract:In this paper, part of the DREAMING Challenge - Diminished Reality for Emerging Applications in Medicine through Inpainting, we introduce a refined video inpainting technique optimised from the ProPainter method to meet the specialised demands of medical imaging, specifically in the context of oral and maxillofacial surgery. Our enhanced algorithm employs the zero-shot ProPainter, featuring optimized parameters and pre-processing, to adeptly manage the complex task of inpainting surgical video sequences, without requiring any training process. It aims to produce temporally coherent and detail-rich reconstructions of occluded regions, facilitating clearer views of operative fields. The efficacy of our approach is evaluated using comprehensive metrics, positioning it as a significant advancement in the application of diminished reality for medical purposes.
Abstract:Over the past years, YOLOs have emerged as the predominant paradigm in the field of real-time object detection owing to their effective balance between computational cost and detection performance. Researchers have explored the architectural designs, optimization objectives, data augmentation strategies, and others for YOLOs, achieving notable progress. However, the reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs and adversely impacts the inference latency. Besides, the design of various components in YOLOs lacks the comprehensive and thorough inspection, resulting in noticeable computational redundancy and limiting the model's capability. It renders the suboptimal efficiency, along with considerable potential for performance improvements. In this work, we aim to further advance the performance-efficiency boundary of YOLOs from both the post-processing and model architecture. To this end, we first present the consistent dual assignments for NMS-free training of YOLOs, which brings competitive performance and low inference latency simultaneously. Moreover, we introduce the holistic efficiency-accuracy driven model design strategy for YOLOs. We comprehensively optimize various components of YOLOs from both efficiency and accuracy perspectives, which greatly reduces the computational overhead and enhances the capability. The outcome of our effort is a new generation of YOLO series for real-time end-to-end object detection, dubbed YOLOv10. Extensive experiments show that YOLOv10 achieves state-of-the-art performance and efficiency across various model scales. For example, our YOLOv10-S is 1.8$\times$ faster than RT-DETR-R18 under the similar AP on COCO, meanwhile enjoying 2.8$\times$ smaller number of parameters and FLOPs. Compared with YOLOv9-C, YOLOv10-B has 46\% less latency and 25\% fewer parameters for the same performance.
Abstract:Point cloud videos effectively capture real-world spatial geometries and temporal dynamics, which are essential for enabling intelligent agents to understand the dynamically changing 3D world we live in. Although static 3D point cloud processing has witnessed significant advancements, designing an effective 4D point cloud video backbone remains challenging, mainly due to the irregular and unordered distribution of points and temporal inconsistencies across frames. Moreover, recent state-of-the-art 4D backbones predominantly rely on transformer-based architectures, which commonly suffer from large computational costs due to their quadratic complexity, particularly when processing long video sequences. To address these challenges, we propose a novel 4D point cloud video understanding backbone based on the recently advanced State Space Models (SSMs). Specifically, our backbone begins by disentangling space and time in raw 4D sequences, and then establishing spatio-temporal correlations using our newly developed Intra-frame Spatial Mamba and Inter-frame Temporal Mamba blocks. The Intra-frame Spatial Mamba module is designed to encode locally similar or related geometric structures within a certain temporal searching stride, which can effectively capture short-term dynamics. Subsequently, these locally correlated tokens are delivered to the Inter-frame Temporal Mamba module, which globally integrates point features across the entire video with linear complexity, further establishing long-range motion dependencies. Experimental results on human action recognition and 4D semantic segmentation tasks demonstrate the superiority of our proposed method. Especially, for long video sequences, our proposed Mamba-based method has an 87.5% GPU memory reduction, 5.36 times speed-up, and much higher accuracy (up to +10.4%) compared with transformer-based counterparts on MSR-Action3D dataset.
Abstract:Recent advancements in deep learning have significantly improved brain tumour segmentation techniques; however, the results still lack confidence and robustness as they solely consider image data without biophysical priors or pathological information. Integrating biophysics-informed regularisation is one effective way to change this situation, as it provides an prior regularisation for automated end-to-end learning. In this paper, we propose a novel approach that designs brain tumour growth Partial Differential Equation (PDE) models as a regularisation with deep learning, operational with any network model. Our method introduces tumour growth PDE models directly into the segmentation process, improving accuracy and robustness, especially in data-scarce scenarios. This system estimates tumour cell density using a periodic activation function. By effectively integrating this estimation with biophysical models, we achieve a better capture of tumour characteristics. This approach not only aligns the segmentation closer to actual biological behaviour but also strengthens the model's performance under limited data conditions. We demonstrate the effectiveness of our framework through extensive experiments on the BraTS 2023 dataset, showcasing significant improvements in both precision and reliability of tumour segmentation.
Abstract:Multi-object tracking in traffic videos is a crucial research area, offering immense potential for enhancing traffic monitoring accuracy and promoting road safety measures through the utilisation of advanced machine learning algorithms. However, existing datasets for multi-object tracking in traffic videos often feature limited instances or focus on single classes, which cannot well simulate the challenges encountered in complex traffic scenarios. To address this gap, we introduce TrafficMOT, an extensive dataset designed to encompass diverse traffic situations with complex scenarios. To validate the complexity and challenges presented by TrafficMOT, we conducted comprehensive empirical studies using three different settings: fully-supervised, semi-supervised, and a recent powerful zero-shot foundation model Tracking Anything Model (TAM). The experimental results highlight the inherent complexity of this dataset, emphasising its value in driving advancements in the field of traffic monitoring and multi-object tracking.
Abstract:Traffic videos inherently differ from generic videos in their stationary camera setup, thus providing a strong motion prior where objects often move in a specific direction over a short time interval. Existing works predominantly employ generic video object detection framework for traffic video object detection, which yield certain advantages such as broad applicability and robustness to diverse scenarios. However, they fail to harness the strength of motion prior to enhance detection accuracy. In this work, we propose two innovative methods to exploit the motion prior and boost the performance of both fully-supervised and semi-supervised traffic video object detection. Firstly, we introduce a new self-attention module that leverages the motion prior to guide temporal information integration in the fully-supervised setting. Secondly, we utilise the motion prior to develop a pseudo-labelling mechanism to eliminate noisy pseudo labels for the semi-supervised setting. Both of our motion-prior-centred methods consistently demonstrates superior performance, outperforming existing state-of-the-art approaches by a margin of 2% in terms of mAP.
Abstract:Breast cancer is a major cause of cancer death among women, emphasising the importance of early detection for improved treatment outcomes and quality of life. Mammography, the primary diagnostic imaging test, poses challenges due to the high variability and patterns in mammograms. Double reading of mammograms is recommended in many screening programs to improve diagnostic accuracy but increases radiologists' workload. Researchers explore Machine Learning models to support expert decision-making. Stand-alone models have shown comparable or superior performance to radiologists, but some studies note decreased sensitivity with multiple datasets, indicating the need for high generalisation and robustness models. This work devises MammoDG, a novel deep-learning framework for generalisable and reliable analysis of cross-domain multi-center mammography data. MammoDG leverages multi-view mammograms and a novel contrastive mechanism to enhance generalisation capabilities. Extensive validation demonstrates MammoDG's superiority, highlighting the critical importance of domain generalisation for trustworthy mammography analysis in imaging protocol variations.
Abstract:Deformable image registration is a fundamental task in medical image analysis and plays a crucial role in a wide range of clinical applications. Recently, deep learning-based approaches have been widely studied for deformable medical image registration and achieved promising results. However, existing deep learning image registration techniques do not theoretically guarantee topology-preserving transformations. This is a key property to preserve anatomical structures and achieve plausible transformations that can be used in real clinical settings. We propose a novel framework for deformable image registration. Firstly, we introduce a novel regulariser based on conformal-invariant properties in a nonlinear elasticity setting. Our regulariser enforces the deformation field to be smooth, invertible and orientation-preserving. More importantly, we strictly guarantee topology preservation yielding to a clinical meaningful registration. Secondly, we boost the performance of our regulariser through coordinate MLPs, where one can view the to-be-registered images as continuously differentiable entities. We demonstrate, through numerical and visual experiments, that our framework is able to outperform current techniques for image registration.
Abstract:Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.