Abstract:Contrast-enhanced brain MRI (CE-MRI) is a valuable diagnostic technique but may pose health risks and incur high costs. To create safer alternatives, multi-modality medical image translation aims to synthesize CE-MRI images from other available modalities. Although existing methods can generate promising predictions, they still face two challenges, i.e., exhibiting over-confidence and lacking interpretability on predictions. To address the above challenges, this paper introduces TrustI2I, a novel trustworthy method that reformulates multi-to-one medical image translation problem as a multimodal regression problem, aiming to build an uncertainty-aware and reliable system. Specifically, our method leverages deep evidential regression to estimate prediction uncertainties and employs an explicit intermediate and late fusion strategy based on the Mixture of Normal Inverse Gamma (MoNIG) distribution, enhancing both synthesis quality and interpretability. Additionally, we incorporate uncertainty calibration to improve the reliability of uncertainty. Validation on the BraTS2018 dataset demonstrates that our approach surpasses current methods, producing higher-quality images with rational uncertainty estimation.
Abstract:Electroencephalography (EEG) plays a vital role in detecting how brain responses to different stimulus. In this paper, we propose a novel Shallow-Deep Attention-based Network (SDANet) to classify the correct auditory stimulus evoking the EEG signal. It adopts the Attention-based Correlation Module (ACM) to discover the connection between auditory speech and EEG from global aspect, and the Shallow-Deep Similarity Classification Module (SDSCM) to decide the classification result via the embeddings learned from the shallow and deep layers. Moreover, various training strategies and data augmentation are used to boost the model robustness. Experiments are conducted on the dataset provided by Auditory EEG challenge (ICASSP Signal Processing Grand Challenge 2023). Results show that the proposed model has a significant gain over the baseline on the match-mismatch track.
Abstract:In this paper, the problem of orientation correction in cardiac MRI images is investigated and a framework for orientation recognition via deep neural networks is proposed. For multi-modality MRI, we introduce a transfer learning strategy to transfer our proposed model from single modality to multi-modality. We embed the proposed network into the orientation correction command-line tool, which can implement orientation correction on 2D DICOM and 3D NIFTI images. Our source code, network models and tools are available at https://github.com/Jy-stdio/MSCMR_orient/
Abstract:Recognizing the feelings of human beings plays a critical role in our daily communication. Neuroscience has demonstrated that different emotion states present different degrees of activation in different brain regions, EEG frequency bands and temporal stamps. In this paper, we propose a novel structure to explore the informative EEG features for emotion recognition. The proposed module, denoted by PST-Attention, consists of Positional, Spectral and Temporal Attention modules to explore more discriminative EEG features. Specifically, the Positional Attention module is to capture the activate regions stimulated by different emotions in the spatial dimension. The Spectral and Temporal Attention modules assign the weights of different frequency bands and temporal slices respectively. Our method is adaptive as well as efficient which can be fit into 3D Convolutional Neural Networks (3D-CNN) as a plug-in module. We conduct experiments on two real-world datasets. 3D-CNN combined with our module achieves promising results and demonstrate that the PST-Attention is able to capture stable patterns for emotion recognition from EEG.
Abstract:Electroencephalogram (EEG) can objectively reflect emotional state and changes. However, the transmission mechanism of EEG in the brain and its internal relationship with emotion are still ambiguous to human beings. This paper presents a novel approach to EEG emotion recognition built exclusively on self-attention over the spectrum, space, and time dimensions to explore the contribution of different EEG electrodes and temporal slices to specific emotional states. Our method, named EEG emotion Transformer (EeT), adapts the conventional Transformer architecture to EEG signals by enabling spatiospectral feature learning directly from the sequences of EEG signals. Our experimental results demonstrate that "joint attention" where temporal and spatial attention are applied simultaneously within each block, leads to the best emotion recognition accuracy among the design choices. In addition, compared with other competitive methods, the proposed method achieves state-of-art results on SEED and SEED-IV datasets.