Abstract:Text-to-speech (TTS) models have been widely adopted to enhance automatic speech recognition (ASR) systems using text-only corpora, thereby reducing the cost of labeling real speech data. Existing research primarily utilizes additional text data and predefined speech styles supported by TTS models. In this paper, we propose Hard-Synth, a novel ASR data augmentation method that leverages large language models (LLMs) and advanced zero-shot TTS. Our approach employs LLMs to generate diverse in-domain text through rewriting, without relying on additional text data. Rather than using predefined speech styles, we introduce a hard prompt selection method with zero-shot TTS to clone speech styles that the ASR model finds challenging to recognize. Experiments demonstrate that Hard-Synth significantly enhances the Conformer model, achieving relative word error rate (WER) reductions of 6.5\%/4.4\% on LibriSpeech dev/test-other subsets. Additionally, we show that Hard-Synth is data-efficient and capable of reducing bias in ASR.
Abstract:In this paper, we review legal testing methods based on Large Language Models (LLMs), using the OPENAI o1 model as a case study to evaluate the performance of large models in applying legal provisions. We compare current state-of-the-art LLMs, including open-source, closed-source, and legal-specific models trained specifically for the legal domain. Systematic tests are conducted on English and Chinese legal cases, and the results are analyzed in depth. Through systematic testing of legal cases from common law systems and China, this paper explores the strengths and weaknesses of LLMs in understanding and applying legal texts, reasoning through legal issues, and predicting judgments. The experimental results highlight both the potential and limitations of LLMs in legal applications, particularly in terms of challenges related to the interpretation of legal language and the accuracy of legal reasoning. Finally, the paper provides a comprehensive analysis of the advantages and disadvantages of various types of models, offering valuable insights and references for the future application of AI in the legal field.
Abstract:Surgical procedures are inherently complex and dynamic, with intricate dependencies and various execution paths. Accurate identification of the intentions behind critical actions, referred to as Primary Intentions (PIs), is crucial to understanding and planning the procedure. This paper presents a novel framework that advances PI recognition in instructional videos by combining top-down grammatical structure with bottom-up visual cues. The grammatical structure is based on a rich corpus of surgical procedures, offering a hierarchical perspective on surgical activities. A grammar parser, utilizing the surgical activity grammar, processes visual data obtained from laparoscopic images through surgical action detectors, ensuring a more precise interpretation of the visual information. Experimental results on the benchmark dataset demonstrate that our method outperforms existing surgical activity detectors that rely solely on visual features. Our research provides a promising foundation for developing advanced robotic surgical systems with enhanced planning and automation capabilities.
Abstract:This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.
Abstract:In response to the urgent demand for grid stability and the complex challenges posed by renewable energy integration and electricity market dynamics, the power sector increasingly seeks innovative technological solutions. In this context, large language models (LLMs) have become a key technology to improve efficiency and promote intelligent progress in the power sector with their excellent natural language processing, logical reasoning, and generalization capabilities. Despite their potential, the absence of a performance evaluation benchmark for LLM in the power sector has limited the effective application of these technologies. Addressing this gap, our study introduces "ElecBench", an evaluation benchmark of LLMs within the power sector. ElecBench aims to overcome the shortcomings of existing evaluation benchmarks by providing comprehensive coverage of sector-specific scenarios, deepening the testing of professional knowledge, and enhancing decision-making precision. The framework categorizes scenarios into general knowledge and professional business, further divided into six core performance metrics: factuality, logicality, stability, security, fairness, and expressiveness, and is subdivided into 24 sub-metrics, offering profound insights into the capabilities and limitations of LLM applications in the power sector. To ensure transparency, we have made the complete test set public, evaluating the performance of eight LLMs across various scenarios and metrics. ElecBench aspires to serve as the standard benchmark for LLM applications in the power sector, supporting continuous updates of scenarios, metrics, and models to drive technological progress and application.
Abstract:With the development of large text-to-speech (TTS) models and scale-up of the training data, state-of-the-art TTS systems have achieved impressive performance. In this paper, we present WenetSpeech4TTS, a multi-domain Mandarin corpus derived from the open-sourced WenetSpeech dataset. Tailored for the text-to-speech tasks, we refined WenetSpeech by adjusting segment boundaries, enhancing the audio quality, and eliminating speaker mixing within each segment. Following a more accurate transcription process and quality-based data filtering process, the obtained WenetSpeech4TTS corpus contains $12,800$ hours of paired audio-text data. Furthermore, we have created subsets of varying sizes, categorized by segment quality scores to allow for TTS model training and fine-tuning. VALL-E and NaturalSpeech 2 systems are trained and fine-tuned on these subsets to validate the usability of WenetSpeech4TTS, establishing baselines on benchmark for fair comparison of TTS systems. The corpus and corresponding benchmarks are publicly available on huggingface.
Abstract:Graph representation learning has become a hot research topic due to its powerful nonlinear fitting capability in extracting representative node embeddings. However, for sequential data such as speech signals, most traditional methods merely focus on the static graph created within a sequence, and largely overlook the intrinsic evolving patterns of these data. This may reduce the efficiency of graph representation learning for sequential data. For this reason, we propose an adaptive graph representation learning method based on dynamically evolved graphs, which are consecutively constructed on a series of subsequences segmented by a sliding window. In doing this, it is better to capture local and global context information within a long sequence. Moreover, we introduce a weighted approach to update the node representation rather than the conventional average one, where the weights are calculated by a novel matrix computation based on the degree of neighboring nodes. Finally, we construct a learnable graph convolutional layer that combines the graph structure loss and classification loss to optimize the graph structure. To verify the effectiveness of the proposed method, we conducted experiments for speech emotion recognition on the IEMOCAP and RAVDESS datasets. Experimental results show that the proposed method outperforms the latest (non-)graph-based models.
Abstract:Conversational Emotion Recognition (CER) aims to predict the emotion expressed by an utterance (referred to as an ``event'') during a conversation. Existing graph-based methods mainly focus on event interactions to comprehend the conversational context, while overlooking the direct influence of the speaker's emotional state on the events. In addition, real-time modeling of the conversation is crucial for real-world applications but is rarely considered. Toward this end, we propose a novel graph-based approach, namely Event-State Interactions infused Heterogeneous Graph Neural Network (ESIHGNN), which incorporates the speaker's emotional state and constructs a heterogeneous event-state interaction graph to model the conversation. Specifically, a heterogeneous directed acyclic graph neural network is employed to dynamically update and enhance the representations of events and emotional states at each turn, thereby improving conversational coherence and consistency. Furthermore, to further improve the performance of CER, we enrich the graph's edges with external knowledge. Experimental results on four publicly available CER datasets show the superiority of our approach and the effectiveness of the introduced heterogeneous event-state interaction graph.
Abstract:With extensive pre-trained knowledge and high-level general capabilities, large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects such as multi-task learning, sample efficiency, and task planning. In this survey, we provide a comprehensive review of the existing literature in $\textit{LLM-enhanced RL}$ and summarize its characteristics compared to conventional RL methods, aiming to clarify the research scope and directions for future studies. Utilizing the classical agent-environment interaction paradigm, we propose a structured taxonomy to systematically categorize LLMs' functionalities in RL, including four roles: information processor, reward designer, decision-maker, and generator. Additionally, for each role, we summarize the methodologies, analyze the specific RL challenges that are mitigated, and provide insights into future directions. Lastly, potential applications, prospective opportunities and challenges of the $\textit{LLM-enhanced RL}$ are discussed.
Abstract:Graph-structured data are the commonly used and have wide application scenarios in the real world. For these diverse applications, the vast variety of learning tasks, graph domains, and complex graph learning procedures present challenges for human experts when designing versatile graph learning approaches. Facing these challenges, large language models (LLMs) offer a potential solution due to the extensive knowledge and the human-like intelligence. This paper proposes a novel conceptual prototype for designing versatile graph learning methods with LLMs, with a particular focus on the "where" and "how" perspectives. From the "where" perspective, we summarize four key graph learning procedures, including task definition, graph data feature engineering, model selection and optimization, deployment and serving. We then explore the application scenarios of LLMs in these procedures across a wider spectrum. In the "how" perspective, we align the abilities of LLMs with the requirements of each procedure. Finally, we point out the promising directions that could better leverage the strength of LLMs towards versatile graph learning methods.