Abstract:Data protection legislation like the European Union's General Data Protection Regulation (GDPR) establishes the \textit{right to be forgotten}: a user (client) can request contributions made using their data to be removed from learned models. In this paper, we study how to remove the contributions made by a client participating in a Federated Online Learning to Rank (FOLTR) system. In a FOLTR system, a ranker is learned by aggregating local updates to the global ranking model. Local updates are learned in an online manner at a client-level using queries and implicit interactions that have occurred within that specific client. By doing so, each client's local data is not shared with other clients or with a centralised search service, while at the same time clients can benefit from an effective global ranking model learned from contributions of each client in the federation. In this paper, we study an effective and efficient unlearning method that can remove a client's contribution without compromising the overall ranker effectiveness and without needing to retrain the global ranker from scratch. A key challenge is how to measure whether the model has unlearned the contributions from the client $c^*$ that has requested removal. For this, we instruct $c^*$ to perform a poisoning attack (add noise to this client updates) and then we measure whether the impact of the attack is lessened when the unlearning process has taken place. Through experiments on four datasets, we demonstrate the effectiveness and efficiency of the unlearning strategy under different combinations of parameter settings.
Abstract:Federated online learning to rank (FOLTR) aims to preserve user privacy by not sharing their searchable data and search interactions, while guaranteeing high search effectiveness, especially in contexts where individual users have scarce training data and interactions. For this, FOLTR trains learning to rank models in an online manner -- i.e. by exploiting users' interactions with the search systems (queries, clicks), rather than labels -- and federatively -- i.e. by not aggregating interaction data in a central server for training purposes, but by training instances of a model on each user device on their own private data, and then sharing the model updates, not the data, across a set of users that have formed the federation. Existing FOLTR methods build upon advances in federated learning. While federated learning methods have been shown effective at training machine learning models in a distributed way without the need of data sharing, they can be susceptible to attacks that target either the system's security or its overall effectiveness. In this paper, we consider attacks on FOLTR systems that aim to compromise their search effectiveness. Within this scope, we experiment with and analyse data and model poisoning attack methods to showcase their impact on FOLTR search effectiveness. We also explore the effectiveness of defense methods designed to counteract attacks on FOLTR systems. We contribute an understanding of the effect of attack and defense methods for FOLTR systems, as well as identifying the key factors influencing their effectiveness.
Abstract:In this perspective paper we study the effect of non independent and identically distributed (non-IID) data on federated online learning to rank (FOLTR) and chart directions for future work in this new and largely unexplored research area of Information Retrieval. In the FOLTR process, clients join a federation to jointly create an effective ranker from the implicit click signal originating in each client, without the need to share data (documents, queries, clicks). A well-known factor that affects the performance of federated learning systems, and that poses serious challenges to these approaches, is the fact that there may be some type of bias in the way the data is distributed across clients. While FOLTR systems are on their own rights a type of federated learning system, the presence and effect of non-IID data in FOLTR has not been studied. To this aim, we first enumerate possible data distribution settings that may showcase data bias across clients and thus give rise to the non-IID problem. Then, we study the impact of each of these settings on the performance of the current state-of-the-art FOLTR approach, the Federated Pairwise Differentiable Gradient Descent (FPDGD), and we highlight which data distributions may pose a problem for FOLTR methods. We also explore how common approaches proposed in the federated learning literature address non-IID issues in FOLTR. This allows us to unveil new research gaps that, we argue, future research in FOLTR should consider. This is an important contribution to the current state of the field of FOLTR because, for FOLTR systems to be deployed, the factors affecting their performance, including the impact of non-IID data, need to thoroughly be understood.
Abstract:Paraphrase generation is a fundamental and long-standing task in natural language processing. In this paper, we concentrate on two contributions to the task: (1) we propose Retrieval Augmented Prompt Tuning (RAPT) as a parameter-efficient method to adapt large pre-trained language models for paraphrase generation; (2) we propose Novelty Conditioned RAPT (NC-RAPT) as a simple model-agnostic method of using specialized prompt tokens for controlled paraphrase generation with varying levels of lexical novelty. By conducting extensive experiments on four datasets, we demonstrate the effectiveness of the proposed approaches for retaining the semantic content of the original text while inducing lexical novelty in the generation.