School of Computing, University of Portsmouth, Portsmouth, United Kingdom
Abstract:Inference scaling empowers LLMs with unprecedented reasoning ability, with reinforcement learning as the core technique to elicit complex reasoning. However, key technical details of state-of-the-art reasoning LLMs are concealed (such as in OpenAI o1 blog and DeepSeek R1 technical report), thus the community still struggles to reproduce their RL training results. We propose the $\textbf{D}$ecoupled Clip and $\textbf{D}$ynamic s$\textbf{A}$mpling $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{DAPO}$) algorithm, and fully open-source a state-of-the-art large-scale RL system that achieves 50 points on AIME 2024 using Qwen2.5-32B base model. Unlike previous works that withhold training details, we introduce four key techniques of our algorithm that make large-scale LLM RL a success. In addition, we open-source our training code, which is built on the verl framework, along with a carefully curated and processed dataset. These components of our open-source system enhance reproducibility and support future research in large-scale LLM RL.
Abstract:Propelled by the breakthrough in deep generative models, audio-to-image generation has emerged as a pivotal cross-model task that converts complex auditory signals into rich visual representations. However, previous works only focus on single-source audio inputs for image generation, ignoring the multi-source characteristic in natural auditory scenes, thus limiting the performance in generating comprehensive visual content. To bridge this gap, a method called MACS is proposed to conduct multi-source audio-to-image generation. This is the first work that explicitly separates multi-source audio to capture the rich audio components before image generation. MACS is a two-stage method. In the first stage, multi-source audio inputs are separated by a weakly supervised method, where the audio and text labels are semantically aligned by casting into a common space using the large pre-trained CLAP model. We introduce a ranking loss to consider the contextual significance of the separated audio signals. In the second stage, efficient image generation is achieved by mapping the separated audio signals to the generation condition using only a trainable adapter and a MLP layer. We preprocess the LLP dataset as the first full multi-source audio-to-image generation benchmark. The experiments are conducted on multi-source, mixed-source, and single-source audio-to-image generation tasks. The proposed MACS outperforms the current state-of-the-art methods in 17 of the 21 evaluation indexes on all tasks and delivers superior visual quality. The code will be publicly available.
Abstract:Erase inpainting, or object removal, aims to precisely remove target objects within masked regions while preserving the overall consistency of the surrounding content. Despite diffusion-based methods have made significant strides in the field of image inpainting, challenges remain regarding the emergence of unexpected objects or artifacts. We assert that the inexact diffusion pathways established by existing standard optimization paradigms constrain the efficacy of object removal. To tackle these challenges, we propose a novel Erase Diffusion, termed EraDiff, aimed at unleashing the potential power of standard diffusion in the context of object removal. In contrast to standard diffusion, the EraDiff adapts both the optimization paradigm and the network to improve the coherence and elimination of the erasure results. We first introduce a Chain-Rectifying Optimization (CRO) paradigm, a sophisticated diffusion process specifically designed to align with the objectives of erasure. This paradigm establishes innovative diffusion transition pathways that simulate the gradual elimination of objects during optimization, allowing the model to accurately capture the intent of object removal. Furthermore, to mitigate deviations caused by artifacts during the sampling pathways, we develop a simple yet effective Self-Rectifying Attention (SRA) mechanism. The SRA calibrates the sampling pathways by altering self-attention activation, allowing the model to effectively bypass artifacts while further enhancing the coherence of the generated content. With this design, our proposed EraDiff achieves state-of-the-art performance on the OpenImages V5 dataset and demonstrates significant superiority in real-world scenarios.
Abstract:The impact of random seeds in fine-tuning large language models (LLMs) has been largely overlooked despite its potential influence on model performance.In this study, we systematically evaluate the effects of random seeds on LLMs using the GLUE and SuperGLUE benchmarks. We analyze the macro-level impact through traditional metrics like accuracy and F1, calculating their mean and variance to quantify performance fluctuations. To capture the micro-level effects, we introduce a novel metric, consistency, measuring the stability of individual predictions across runs. Our experiments reveal significant variance at both macro and micro levels, underscoring the need for careful consideration of random seeds in fine-tuning and evaluation.
Abstract:Deep learning methods for material property prediction have been widely explored to advance materials discovery. However, the prevailing pre-train then fine-tune paradigm often fails to address the inherent diversity and disparity of material tasks. To overcome these challenges, we introduce MoMa, a Modular framework for Materials that first trains specialized modules across a wide range of tasks and then adaptively composes synergistic modules tailored to each downstream scenario. Evaluation across 17 datasets demonstrates the superiority of MoMa, with a substantial 14% average improvement over the strongest baseline. Few-shot and continual learning experiments further highlight MoMa's potential for real-world applications. Pioneering a new paradigm of modular material learning, MoMa will be open-sourced to foster broader community collaboration.
Abstract:Knowledge Tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive modeling on the sequence of former exercises has been proven effective for this task. One of the primary challenges in autoregressive modeling for Knowledge Tracing is effectively representing the anterior (pre-response) and posterior (post-response) states of learners across exercises. Existing methods often employ complex model architectures to update learner states using question and response records. In this study, we propose a novel perspective on knowledge tracing task by treating it as a generative process, consistent with the principles of autoregressive models. We demonstrate that knowledge states can be directly represented through autoregressive encodings on a question-response alternate sequence, where model generate the most probable representation in hidden state space by analyzing history interactions. This approach underpins our framework, termed Alternate Autoregressive Knowledge Tracing (AAKT). Additionally, we incorporate supplementary educational information, such as question-related skills, into our framework through an auxiliary task, and include extra exercise details, like response time, as additional inputs. Our proposed framework is implemented using advanced autoregressive technologies from Natural Language Generation (NLG) for both training and prediction. Empirical evaluations on four real-world KT datasets indicate that AAKT consistently outperforms all baseline models in terms of AUC, ACC, and RMSE. Furthermore, extensive ablation studies and visualized analysis validate the effectiveness of key components in AAKT.
Abstract:Although Reinforcement Learning (RL)-based Traffic Signal Control (TSC) methods have been extensively studied, their practical applications still raise some serious issues such as high learning cost and poor generalizability. This is because the ``trial-and-error'' training style makes RL agents extremely dependent on the specific traffic environment, which also requires a long convergence time. To address these issues, we propose a novel Federated Imitation Learning (FIL)-based framework for multi-intersection TSC, named FitLight, which allows RL agents to plug-and-play for any traffic environment without additional pre-training cost. Unlike existing imitation learning approaches that rely on pre-training RL agents with demonstrations, FitLight allows real-time imitation learning and seamless transition to reinforcement learning. Due to our proposed knowledge-sharing mechanism and novel hybrid pressure-based agent design, RL agents can quickly find a best control policy with only a few episodes. Moreover, for resource-constrained TSC scenarios, FitLight supports model pruning and heterogeneous model aggregation, such that RL agents can work on a micro-controller with merely 16{\it KB} RAM and 32{\it KB} ROM. Extensive experiments demonstrate that, compared to state-of-the-art methods, FitLight not only provides a superior starting point but also converges to a better final solution on both real-world and synthetic datasets, even under extreme resource limitations.
Abstract:While long-context inference is crucial for advancing large language model (LLM) applications, its prefill speed remains a significant bottleneck. Current approaches, including sequence parallelism strategies and compute reduction through approximate attention mechanisms, still fall short of delivering optimal inference efficiency. This hinders scaling the inputs to longer sequences and processing long-context queries in a timely manner. To address this, we introduce APB, an efficient long-context inference framework that leverages multi-host approximate attention to enhance prefill speed by reducing compute and enhancing parallelism simultaneously. APB introduces a communication mechanism for essential key-value pairs within a sequence parallelism framework, enabling a faster inference speed while maintaining task performance. We implement APB by incorporating a tailored FlashAttn kernel alongside optimized distribution strategies, supporting diverse models and parallelism configurations. APB achieves speedups of up to 9.2x, 4.2x, and 1.6x compared with FlashAttn, RingAttn, and StarAttn, respectively, without any observable task performance degradation. We provide the implementation and experiment code of APB in https://github.com/thunlp/APB.
Abstract:Unstructured grid data are essential for modelling complex geometries and dynamics in computational physics. Yet, their inherent irregularity presents significant challenges for conventional machine learning (ML) techniques. This paper provides a comprehensive review of advanced ML methodologies designed to handle unstructured grid data in high-dimensional dynamical systems. Key approaches discussed include graph neural networks, transformer models with spatial attention mechanisms, interpolation-integrated ML methods, and meshless techniques such as physics-informed neural networks. These methodologies have proven effective across diverse fields, including fluid dynamics and environmental simulations. This review is intended as a guidebook for computational scientists seeking to apply ML approaches to unstructured grid data in their domains, as well as for ML researchers looking to address challenges in computational physics. It places special focus on how ML methods can overcome the inherent limitations of traditional numerical techniques and, conversely, how insights from computational physics can inform ML development. To support benchmarking, this review also provides a summary of open-access datasets of unstructured grid data in computational physics. Finally, emerging directions such as generative models with unstructured data, reinforcement learning for mesh generation, and hybrid physics-data-driven paradigms are discussed to inspire future advancements in this evolving field.
Abstract:Insulators are crucial insulation components and structural supports in power grids, playing a vital role in the transmission lines. Due to temperature fluctuations, internal stress, or damage from hail, insulators are prone to injury. Automatic detection of damaged insulators faces challenges such as diverse types, small defect targets, and complex backgrounds and shapes. Most research for detecting insulator defects has focused on a single defect type or a specific material. However, the insulators in the grid's transmission lines have different colors and materials. Various insulator defects coexist, and the existing methods have difficulty meeting the practical application requirements. Current methods suffer from low detection accuracy and mAP0.5 cannot meet application requirements. This paper proposes an improved YOLOv7 model for multi-type insulator defect detection. First, our model replaces the SPPCSPC module with the RFB module to enhance the network's feature extraction capability. Second, a CA mechanism is introduced into the head part to enhance the network's feature representation ability and to improve detection accuracy. Third, a WIoU loss function is employed to address the low-quality samples hindering model generalization during training, thereby improving the model's overall performance. The experimental results indicate that the proposed model exhibits enhancements across various performance metrics. Specifically, there is a 1.6% advancement in mAP_0.5, a corresponding 1.6% enhancement in mAP_0.5:0.95, a 1.3% elevation in precision, and a 1% increase in recall. Moreover, the model achieves parameter reduction by 3.2 million, leading to a decrease of 2.5 GFLOPS in computational cost. Notably, there is also an improvement of 2.81 milliseconds in single-image detection speed.