Charlie
Abstract:Despite improvements by length extrapolation, efficient attention and memory modules, handling infinitely long documents with linear complexity without performance degradation during extrapolation remains the ultimate challenge in long-text processing. We directly optimize for long-text tasks in an end-to-end fashion and introduce a novel agent workflow, MemAgent, which reads text in segments and updates the memory using an overwrite strategy. We extend the DAPO algorithm to facilitate training via independent-context multi-conversation generation. MemAgent has demonstrated superb long-context capabilities, being able to extrapolate from an 8K context trained on 32K text to a 3.5M QA task with performance loss < 5% and achieves 95%+ in 512K RULER test.
Abstract:Activation sparsity can reduce the computational overhead and memory transfers during the forward pass of Large Language Model (LLM) inference. Existing methods face limitations, either demanding time-consuming recovery training that hinders real-world adoption, or relying on empirical magnitude-based pruning, which causes fluctuating sparsity and unstable inference speed-up. This paper introduces LaRoSA (Layerwise Rotated Sparse Activation), a novel method for activation sparsification designed to improve LLM efficiency without requiring additional training or magnitude-based pruning. We leverage layerwise orthogonal rotations to transform input activations into rotated forms that are more suitable for sparsification. By employing a Top-K selection approach within the rotated activations, we achieve consistent model-level sparsity and reliable wall-clock time speed-up. LaRoSA is effective across various sizes and types of LLMs, demonstrating minimal performance degradation and robust inference acceleration. Specifically, for LLaMA2-7B at 40% sparsity, LaRoSA achieves a mere 0.17 perplexity gap with a consistent 1.30x wall-clock time speed-up, and reduces the accuracy gap in zero-shot tasks compared to the dense model to just 0.54%, while surpassing TEAL by 1.77% and CATS by 17.14%.
Abstract:LLMs' reliance on static knowledge and fragile tool invocation severely hinders the orchestration of complex, heterogeneous toolchains, particularly at large scales. Existing methods typically use rigid single-path execution, resulting in poor error recovery and exponentially growing search spaces. We introduce NaviAgent, a graph-navigated bilevel planning architecture for robust function calling, comprising a Multi-Path Decider and Graph-Encoded Navigator. As an LLM-powered agent, the Multi-Path Decider defines a four-dimensional decision space and continuously perceives environmental states, dynamically selecting the optimal action to fully cover all tool invocation scenarios. The Graph-Encoded Navigator constructs a Tool Dependency Heterogeneous Graph (TDHG), where node embeddings explicitly fuse API schema structure with historical invocation behavior. It also integrates a novel heuristic search strategy that guides the Decider toward efficient and highly successful toolchains, even for unseen tool combinations. Experiments show that NaviAgent consistently achieves the highest task success rate (TSR) across all foundation models and task complexities, outperforming the average baselines (ReAct, ToolLLM, {\alpha}-UMI) by 13.5%, 16.4%, and 19.0% on Qwen2.5-14B, Qwen2.5-32B, and Deepseek-V3, respectively. Its execution steps are typically within one step of the most efficient baseline, ensuring a strong balance between quality and efficiency. Notably, a fine-tuned Qwen2.5-14B model achieves a TSR of 49.5%, surpassing the much larger 32B model (44.9%) under our architecture. Incorporating the Graph-Encoded Navigator further boosts TSR by an average of 2.4 points, with gains up over 9 points on complex tasks for larger models (Deepseek-V3 and GPT-4o), highlighting its essential role in toolchain orchestration.
Abstract:To manage and optimize constantly evolving wireless networks, existing machine learning (ML)- based studies operate as black-box models, leading to increased computational costs during training and a lack of transparency in decision-making, which limits their practical applicability in wireless networks. Motivated by recent advancements in large language model (LLM)-enabled wireless networks, this paper proposes ProWin, a novel framework that leverages reinforced in-context learning to design task-specific demonstration Prompts for Wireless Network optimization, relying on the inference capabilities of LLMs without the need for dedicated model training or finetuning. The task-specific prompts are designed to incorporate natural language descriptions of the task description and formulation, enhancing interpretability and eliminating the need for specialized expertise in network optimization. We further propose a reinforced in-context learning scheme that incorporates a set of advisable examples into task-specific prompts, wherein informative examples capturing historical environment states and decisions are adaptively selected to guide current decision-making. Evaluations on a case study of base station power control showcases that the proposed ProWin outperforms reinforcement learning (RL)-based methods, highlighting the potential for next-generation future wireless network optimization.
Abstract:Unmanned aerial vehicles (UAVs) have been widely adopted in various real-world applications. However, the control and optimization of multi-UAV systems remain a significant challenge, particularly in dynamic and constrained environments. This work explores the joint motion and communication control of multiple UAVs operating within integrated terrestrial and non-terrestrial networks that include high-altitude platform stations (HAPS). Specifically, we consider an aerial highway scenario in which UAVs must accelerate, decelerate, and change lanes to avoid collisions and maintain overall traffic flow. Different from existing studies, we propose a novel hierarchical and collaborative method based on large language models (LLMs). In our approach, an LLM deployed on the HAPS performs UAV access control, while another LLM onboard each UAV handles motion planning and control. This LLM-based framework leverages the rich knowledge embedded in pre-trained models to enable both high-level strategic planning and low-level tactical decisions. This knowledge-driven paradigm holds great potential for the development of next-generation 3D aerial highway systems. Experimental results demonstrate that our proposed collaborative LLM-based method achieves higher system rewards, lower operational costs, and significantly reduced UAV collision rates compared to baseline approaches.
Abstract:Large Language Models (LLMs), such as OpenAI's o1 and DeepSeek's R1, excel at advanced reasoning tasks like math and coding via Reinforcement Learning with Verifiable Rewards (RLVR), but still struggle with puzzles solvable by humans without domain knowledge. We introduce Enigmata, the first comprehensive suite tailored for improving LLMs with puzzle reasoning skills. It includes 36 tasks across seven categories, each with 1) a generator that produces unlimited examples with controllable difficulty and 2) a rule-based verifier for automatic evaluation. This generator-verifier design supports scalable, multi-task RL training, fine-grained analysis, and seamless RLVR integration. We further propose Enigmata-Eval, a rigorous benchmark, and develop optimized multi-task RLVR strategies. Our trained model, Qwen2.5-32B-Enigmata, consistently surpasses o3-mini-high and o1 on the puzzle reasoning benchmarks like Enigmata-Eval, ARC-AGI (32.8%), and ARC-AGI 2 (0.6%). It also generalizes well to out-of-domain puzzle benchmarks and mathematical reasoning, with little multi-tasking trade-off. When trained on larger models like Seed1.5-Thinking (20B activated parameters and 200B total parameters), puzzle data from Enigmata further boosts SoTA performance on advanced math and STEM reasoning tasks such as AIME (2024-2025), BeyondAIME and GPQA (Diamond), showing nice generalization benefits of Enigmata. This work offers a unified, controllable framework for advancing logical reasoning in LLMs. Resources of this work can be found at https://seed-enigmata.github.io.
Abstract:Knowledge understanding is a foundational part of envisioned 6G networks to advance network intelligence and AI-native network architectures. In this paradigm, information extraction plays a pivotal role in transforming fragmented telecom knowledge into well-structured formats, empowering diverse AI models to better understand network terminologies. This work proposes a novel language model-based information extraction technique, aiming to extract structured entities from the telecom context. The proposed telecom structured entity extraction (TeleSEE) technique applies a token-efficient representation method to predict entity types and attribute keys, aiming to save the number of output tokens and improve prediction accuracy. Meanwhile, TeleSEE involves a hierarchical parallel decoding method, improving the standard encoder-decoder architecture by integrating additional prompting and decoding strategies into entity extraction tasks. In addition, to better evaluate the performance of the proposed technique in the telecom domain, we further designed a dataset named 6GTech, including 2390 sentences and 23747 words from more than 100 6G-related technical publications. Finally, the experiment shows that the proposed TeleSEE method achieves higher accuracy than other baseline techniques, and also presents 5 to 9 times higher sample processing speed.
Abstract:Lane Keeping Assist systems, while increasingly prevalent, often suffer from unpredictable real-world failures, largely due to their opaque, black-box nature, which limits driver anticipation and trust. To bridge the gap between automated assistance and effective human oversight, we present LKAlert, a novel supervisory alert system that leverages VLM to forecast potential LKA risk 1-3 seconds in advance. LKAlert processes dash-cam video and CAN data, integrating surrogate lane segmentation features from a parallel interpretable model as automated guiding attention. Unlike traditional binary classifiers, LKAlert issues both predictive alert and concise natural language explanation, enhancing driver situational awareness and trust. To support the development and evaluation of such systems, we introduce OpenLKA-Alert, the first benchmark dataset designed for predictive and explainable LKA failure warnings. It contains synchronized multimodal inputs and human-authored justifications across annotated temporal windows. We further contribute a generalizable methodological framework for VLM-based black-box behavior prediction, combining surrogate feature guidance with LoRA. This framework enables VLM to reason over structured visual context without altering its vision backbone, making it broadly applicable to other complex, opaque systems requiring interpretable oversight. Empirical results correctly predicts upcoming LKA failures with 69.8% accuracy and a 58.6\% F1-score. The system also generates high-quality textual explanations for drivers (71.7 ROUGE-L) and operates efficiently at approximately 2 Hz, confirming its suitability for real-time, in-vehicle use. Our findings establish LKAlert as a practical solution for enhancing the safety and usability of current ADAS and offer a scalable paradigm for applying VLMs to human-centered supervision of black-box automation.
Abstract:Leveraging a newly released open dataset of Lane Keeping Assist (LKA) systems from production vehicles, this paper presents the first comprehensive empirical analysis of real-world LKA performance. Our study yields three key findings: (i) LKA failures can be systematically categorized into perception, planning, and control errors. We present representative examples of each failure mode through in-depth analysis of LKA-related CAN signals, enabling both justification of the failure mechanisms and diagnosis of when and where each module begins to degrade; (ii) LKA systems tend to follow a fixed lane-centering strategy, often resulting in outward drift that increases linearly with road curvature, whereas human drivers proactively steer slightly inward on similar curved segments; (iii) We provide the first statistical summary and distribution analysis of environmental and road conditions under LKA failures, identifying with statistical significance that faded lane markings, low pavement laneline contrast, and sharp curvature are the most dominant individual factors, along with critical combinations that substantially increase failure likelihood. Building on these insights, we propose a theoretical model that integrates road geometry, speed limits, and LKA steering capability to inform infrastructure design. Additionally, we develop a machine learning-based model to assess roadway readiness for LKA deployment, offering practical tools for safer infrastructure planning, especially in rural areas. This work highlights key limitations of current LKA systems and supports the advancement of safer and more reliable autonomous driving technologies.
Abstract:Structure-Based Drug Design (SBDD) is crucial for identifying bioactive molecules. Recent deep generative models are faced with challenges in geometric structure modeling. A major bottleneck lies in the twisted probability path of multi-modalities -- continuous 3D positions and discrete 2D topologies -- which jointly determine molecular geometries. By establishing the fact that noise schedules decide the Variational Lower Bound (VLB) for the twisted probability path, we propose VLB-Optimal Scheduling (VOS) strategy in this under-explored area, which optimizes VLB as a path integral for SBDD. Our model effectively enhances molecular geometries and interaction modeling, achieving state-of-the-art PoseBusters passing rate of 95.9% on CrossDock, more than 10% improvement upon strong baselines, while maintaining high affinities and robust intramolecular validity evaluated on held-out test set.