Abstract:Aiming to match pedestrian images captured under varying lighting conditions, visible-infrared person re-identification (VI-ReID) has drawn intensive research attention and achieved promising results. However, in real-world surveillance contexts, data is distributed across multiple devices/entities, raising privacy and ownership concerns that make existing centralized training impractical for VI-ReID. To tackle these challenges, we propose L2RW, a benchmark that brings VI-ReID closer to real-world applications. The rationale of L2RW is that integrating decentralized training into VI-ReID can address privacy concerns in scenarios with limited data-sharing regulation. Specifically, we design protocols and corresponding algorithms for different privacy sensitivity levels. In our new benchmark, we ensure the model training is done in the conditions that: 1) data from each camera remains completely isolated, or 2) different data entities (e.g., data controllers of a certain region) can selectively share the data. In this way, we simulate scenarios with strict privacy constraints which is closer to real-world conditions. Intensive experiments with various server-side federated algorithms are conducted, showing the feasibility of decentralized VI-ReID training. Notably, when evaluated in unseen domains (i.e., new data entities), our L2RW, trained with isolated data (privacy-preserved), achieves performance comparable to SOTAs trained with shared data (privacy-unrestricted). We hope this work offers a novel research entry for deploying VI-ReID that fits real-world scenarios and can benefit the community.
Abstract:Hashing algorithms have been widely used in large-scale image retrieval tasks, especially for seen class data. Zero-shot hashing algorithms have been proposed to handle unseen class data. The key technique in these algorithms involves learning features from seen classes and transferring them to unseen classes, that is, aligning the feature embeddings between the seen and unseen classes. Most existing zero-shot hashing algorithms use the shared attributes between the two classes of interest to complete alignment tasks. However, the attributes are always described for a whole image, even though they represent specific parts of the image. Hence, these methods ignore the importance of aligning attributes with the corresponding image parts, which explicitly introduces noise and reduces the accuracy achieved when aligning the features of seen and unseen classes. To address this problem, we propose a new zero-shot hashing method called RAZH. We first use a clustering algorithm to group similar patches to image parts for attribute matching and then replace the image parts with the corresponding attribute vectors, gradually aligning each part with its nearest attribute. Extensive evaluation results demonstrate the superiority of the RAZH method over several state-of-the-art methods.
Abstract:Detecting phishing, spam, fake accounts, data scraping, and other malicious activity in online social networks (OSNs) is a problem that has been studied for well over a decade, with a number of important results. Nearly all existing works on abuse detection have as their goal producing the best possible binary classifier; i.e., one that labels unseen examples as "benign" or "malicious" with high precision and recall. However, no prior published work considers what comes next: what does the service actually do after it detects abuse? In this paper, we argue that detection as described in previous work is not the goal of those who are fighting OSN abuse. Rather, we believe the goal to be selecting actions (e.g., ban the user, block the request, show a CAPTCHA, or "collect more evidence") that optimize a tradeoff between harm caused by abuse and impact on benign users. With this framing, we see that enlarging the set of possible actions allows us to move the Pareto frontier in a way that is unattainable by simply tuning the threshold of a binary classifier. To demonstrate the potential of our approach, we present Predictive Response Optimization (PRO), a system based on reinforcement learning that utilizes available contextual information to predict future abuse and user-experience metrics conditioned on each possible action, and select actions that optimize a multi-dimensional tradeoff between abuse/harm and impact on user experience. We deployed versions of PRO targeted at stopping automated activity on Instagram and Facebook. In both cases our experiments showed that PRO outperforms a baseline classification system, reducing abuse volume by 59% and 4.5% (respectively) with no negative impact to users. We also present several case studies that demonstrate how PRO can quickly and automatically adapt to changes in business constraints, system behavior, and/or adversarial tactics.
Abstract:In this work, we extend the SEEDS superpixel algorithm from 2D images to 3D volumes, resulting in 3D SEEDS, a faster, better, and open-source supervoxel algorithm for medical image analysis. We compare 3D SEEDS with the widely used supervoxel algorithm SLIC on 13 segmentation tasks across 10 organs. 3D SEEDS accelerates supervoxel generation by a factor of 10, improves the achievable Dice score by +6.5%, and reduces the under-segmentation error by -0.16%. The code is available at https://github.com/Zch0414/3d_seeds
Abstract:Sensors are key components enabling various applications, e.g., home intrusion detection and environmental monitoring. While various software defenses and physical protections are used to prevent sensor manipulation, this paper introduces a new threat vector, PowerRadio, that bypasses existing protections and changes sensor readings from a distance. PowerRadio leverages interconnected ground (GND) wires, a standard practice for electrical safety at home, to inject malicious signals. The injected signal is coupled by the sensor's analog measurement wire and eventually survives the noise filters, inducing incorrect measurement. We present three methods to manipulate sensors by inducing static bias, periodical signals, or pulses. For instance, we show adding stripes into the captured images of a surveillance camera or injecting inaudible voice commands into conference microphones. We study the underlying principles of PowerRadio and identify its root causes: (1) the lack of shielding between ground and data signal wires and (2) the asymmetry of circuit impedance that enables interference to bypass filtering. We validate PowerRadio against a surveillance system, broadcast systems, and various sensors. We believe that PowerRadio represents an emerging threat, exhibiting the advantages of both radiated and conducted EMI, e.g., expanding the effective attack distance of radiated EMI yet eliminating the requirement of line-of-sight or approaching physically. Our insights shall provide guidance for enhancing the sensors' security and power wiring during the design phases.
Abstract:Data trading is increasingly gaining attention. However, the inherent replicability and privacy concerns of data make it challenging to directly apply traditional trading theories to data markets. This paper compares data trading markets with traditional ones, focusing particularly on how the replicability and privacy of data impact data markets. We discuss how data's replicability fundamentally alters the concept of opportunity cost in traditional microeconomics within the context of data markets. Additionally, we explore how to leverage this change to maximize benefits without compromising data privacy. This paper outlines the constraints for data circulation within the privacy domain chain and presents a model that maximizes data's value under these constraints. Specific application scenarios are provided, and experiments demonstrate the solvability of this model.
Abstract:As social media becomes increasingly popular, more and more activities related to public health emerge. Current techniques for public health analysis involve popular models such as BERT and large language models (LLMs). However, the costs of training in-domain LLMs for public health are especially expensive. Furthermore, such kinds of in-domain datasets from social media are generally imbalanced. To tackle these challenges, the data imbalance issue can be overcome by data augmentation and balanced training. Moreover, the ability of the LLMs can be effectively utilized by prompting the model properly. In this paper, a novel ALEX framework is proposed to improve the performance of public health analysis on social media by adopting an LLMs explanation mechanism. Results show that our ALEX model got the best performance among all submissions in both Task 2 and Task 4 with a high score in Task 1 in Social Media Mining for Health 2023 (SMM4H)[1]. Our code has been released at https:// github.com/YanJiangJerry/ALEX.
Abstract:As social media becomes increasingly popular, more and more public health activities emerge, which is worth noting for pandemic monitoring and government decision-making. Current techniques for public health analysis involve popular models such as BERT and large language models (LLMs). Although recent progress in LLMs has shown a strong ability to comprehend knowledge by being fine-tuned on specific domain datasets, the costs of training an in-domain LLM for every specific public health task are especially expensive. Furthermore, such kinds of in-domain datasets from social media are generally highly imbalanced, which will hinder the efficiency of LLMs tuning. To tackle these challenges, the data imbalance issue can be overcome by sophisticated data augmentation methods for social media datasets. In addition, the ability of the LLMs can be effectively utilised by prompting the model properly. In light of the above discussion, in this paper, a novel ALEX framework is proposed for social media analysis on public health. Specifically, an augmentation pipeline is developed to resolve the data imbalance issue. Furthermore, an LLMs explanation mechanism is proposed by prompting an LLM with the predicted results from BERT models. Extensive experiments conducted on three tasks at the Social Media Mining for Health 2023 (SMM4H) competition with the first ranking in two tasks demonstrate the superior performance of the proposed ALEX method. Our code has been released in https://github.com/YanJiangJerry/ALEX.
Abstract:Revealing hidden dynamics from the stochastic data is a challenging problem as randomness takes part in the evolution of the data. The problem becomes exceedingly complex when the trajectories of the stochastic data are absent in many scenarios. Here we present an approach to effectively modeling the dynamics of the stochastic data without trajectories based on the weak form of the Fokker-Planck (FP) equation, which governs the evolution of the density function in the Brownian process. Taking the collocations of Gaussian functions as the test functions in the weak form of the FP equation, we transfer the derivatives to the Gaussian functions and thus approximate the weak form by the expectational sum of the data. With a dictionary representation of the unknown terms, a linear system is built and then solved by the regression, revealing the unknown dynamics of the data. Hence, we name the method with the Weak Collocation Regression (WCR) method for its three key components: weak form, collocation of Gaussian kernels, and regression. The numerical experiments show that our method is flexible and fast, which reveals the dynamics within seconds in multi-dimensional problems and can be easily extended to high-dimensional data such as 20 dimensions. WCR can also correctly identify the hidden dynamics of the complex tasks with variable-dependent diffusion and coupled drift, and the performance is robust, achieving high accuracy in the case with noise added.
Abstract:The fog-radio-access-network (F-RAN) has been proposed to address the strict latency requirements, which offloads computation tasks generated in user equipments (UEs) to the edge to reduce the processing latency. However, it incorporates the task transmission latency, which may become the bottleneck of latency requirements. Data compression (DC) has been considered as one of the promising techniques to reduce the transmission latency. By compressing the computation tasks before transmitting, the transmission delay is reduced due to the shrink transmitted data size, and the original computing task can be retrieved by employing data decompressing (DD) at the edge nodes or the centre cloud. Nevertheless, the DC and DD incorporate extra processing latency, and the latency performance has not been investigated in the large-scale DC-enabled F-RAN. Therefore, in this work, the successful data compression probability (SDCP) is defined to analyse the latency performance of the F-RAN. Moreover, to analyse the effect of compression offloading ratio (COR), a novel hybrid compression mode is proposed based on the queueing theory. Based on this, the closed-form result of SDCP in the large-scale DC-enabled F-RAN is derived by combining the Matern cluster process and M/G/1 queueing model, and validated by Monte Carlo simulations. Based on the derived SDCP results, the effects of COR on the SDCP is analysed numerically. The results show that the SDCP with the optimal COR can be enhanced with a maximum value of 0.3 and 0.55 as compared with the cases of compressing all computing tasks at the edge and at the UE, respectively. Moreover, for the system requiring the minimal latency, the proposed hybrid compression mode can alleviate the requirement on the backhaul capacity.