Abstract:Despite graph neural networks' (GNNs) great success in modelling graph-structured data, out-of-distribution (OOD) test instances still pose a great challenge for current GNNs. One of the most effective techniques to detect OOD nodes is to expose the detector model with an additional OOD node-set, yet the extra OOD instances are often difficult to obtain in practice. Recent methods for image data address this problem using OOD data synthesis, typically relying on pre-trained generative models like Stable Diffusion. However, these approaches require vast amounts of additional data, as well as one-for-all pre-trained generative models, which are not available for graph data. Therefore, we propose the GOLD framework for graph OOD detection, an implicit adversarial learning pipeline with synthetic OOD exposure without pre-trained models. The implicit adversarial training process employs a novel alternating optimisation framework by training: (1) a latent generative model to regularly imitate the in-distribution (ID) embeddings from an evolving GNN, and (2) a GNN encoder and an OOD detector to accurately classify ID data while increasing the energy divergence between the ID embeddings and the generative model's synthetic embeddings. This novel approach implicitly transforms the synthetic embeddings into pseudo-OOD instances relative to the ID data, effectively simulating exposure to OOD scenarios without auxiliary data. Extensive OOD detection experiments are conducted on five benchmark graph datasets, verifying the superior performance of GOLD without using real OOD data compared with the state-of-the-art OOD exposure and non-exposure baselines.
Abstract:On social media sharing platforms, some posts are inherently destined for popularity. Therefore, understanding the reasons behind this phenomenon and predicting popularity before post publication holds significant practical value. The previous work predominantly focuses on enhancing post content extraction for better prediction results. However, certain factors introduced by social platforms also impact post popularity, which has not been extensively studied. For instance, users are more likely to engage with posts from individuals they follow, potentially influencing the popularity of these posts. We term these factors, unrelated to the explicit attractiveness of content, as implicit social factors. Through the analysis of users' post browsing behavior (also validated in public datasets), we propose three implicit social factors related to popularity, including content relevance, user influence similarity, and user identity. To model the proposed social factors, we introduce three supervised contrastive learning tasks. For different task objectives and data types, we assign them to different encoders and control their gradient flows to achieve joint optimization. We also design corresponding sampling and augmentation algorithms to improve the effectiveness of contrastive learning. Extensive experiments on the Social Media Popularity Dataset validate the superiority of our proposed method and also confirm the important role of implicit social factors in popularity prediction. We open source the code at https://github.com/Daisy-zzz/PPCL.git.
Abstract:Irregular time series, where data points are recorded at uneven intervals, are prevalent in healthcare settings, such as emergency wards where vital signs and laboratory results are captured at varying times. This variability, which reflects critical fluctuations in patient health, is essential for informed clinical decision-making. Existing self-supervised learning research on irregular time series often relies on generic pretext tasks like forecasting, which may not fully utilise the signal provided by irregular time series. There is a significant need for specialised pretext tasks designed for the characteristics of irregular time series to enhance model performance and robustness, especially in scenarios with limited data availability. This paper proposes a novel pretraining framework, EMIT, an event-based masking for irregular time series. EMIT focuses on masking-based reconstruction in the latent space, selecting masking points based on the rate of change in the data. This method preserves the natural variability and timing of measurements while enhancing the model's ability to process irregular intervals without losing essential information. Extensive experiments on the MIMIC-III and PhysioNet Challenge datasets demonstrate the superior performance of our event-based masking strategy. The code has been released at https://github.com/hrishi-ds/EMIT .
Abstract:Offline reinforcement learning (RL) is an effective tool for real-world recommender systems with its capacity to model the dynamic interest of users and its interactive nature. Most existing offline RL recommender systems focus on model-based RL through learning a world model from offline data and building the recommendation policy by interacting with this model. Although these methods have made progress in the recommendation performance, the effectiveness of model-based offline RL methods is often constrained by the accuracy of the estimation of the reward model and the model uncertainties, primarily due to the extreme discrepancy between offline logged data and real-world data in user interactions with online platforms. To fill this gap, a more accurate reward model and uncertainty estimation are needed for the model-based RL methods. In this paper, a novel model-based Reward Shaping in Offline Reinforcement Learning for Recommender Systems, ROLeR, is proposed for reward and uncertainty estimation in recommendation systems. Specifically, a non-parametric reward shaping method is designed to refine the reward model. In addition, a flexible and more representative uncertainty penalty is designed to fit the needs of recommendation systems. Extensive experiments conducted on four benchmark datasets showcase that ROLeR achieves state-of-the-art performance compared with existing baselines. The source code can be downloaded at https://github.com/ArronDZhang/ROLeR.
Abstract:Large-scale graphs are valuable for graph representation learning, yet the abundant data in these graphs hinders the efficiency of the training process. Graph condensation (GC) alleviates this issue by compressing the large graph into a significantly smaller one that still supports effective model training. Although recent research has introduced various approaches to improve the effectiveness of the condensed graph, comprehensive and practical evaluations across different GC methods are neglected. This paper proposes the first large-scale graph condensation benchmark, GCondenser, to holistically evaluate and compare mainstream GC methods. GCondenser includes a standardised GC paradigm, consisting of condensation, validation, and evaluation procedures, as well as enabling extensions to new GC methods and datasets. With GCondenser, a comprehensive performance study is conducted, presenting the effectiveness of existing methods. GCondenser is open-sourced and available at https://github.com/superallen13/GCondenser.
Abstract:Legal case retrieval (LCR) is a specialised information retrieval task that aims to find relevant cases to a given query case. LCR holds pivotal significance in facilitating legal practitioners in finding precedents. Most of existing LCR methods are based on traditional lexical models and language models, which have gained promising performance in retrieval. However, the domain-specific structural information inherent in legal documents is yet to be exploited to further improve the performance. Our previous work CaseGNN successfully harnesses text-attributed graphs and graph neural networks to address the problem of legal structural information neglect. Nonetheless, there remain two aspects for further investigation: (1) The underutilization of rich edge information within text-attributed case graphs limits CaseGNN to generate informative case representation. (2) The inadequacy of labelled data in legal datasets hinders the training of CaseGNN model. In this paper, CaseGNN++, which is extended from CaseGNN, is proposed to simultaneously leverage the edge information and additional label data to discover the latent potential of LCR models. Specifically, an edge feature-based graph attention layer (EUGAT) is proposed to comprehensively update node and edge features during graph modelling, resulting in a full utilisation of structural information of legal cases. Moreover, a novel graph contrastive learning objective with graph augmentation is developed in CaseGNN++ to provide additional training signals, thereby enhancing the legal comprehension capabilities of CaseGNN++ model. Extensive experiments on two benchmark datasets from COLIEE 2022 and COLIEE 2023 demonstrate that CaseGNN++ not only significantly improves CaseGNN but also achieves supreme performance compared to state-of-the-art LCR methods. Code has been released on https://github.com/yanran-tang/CaseGNN.
Abstract:In case law, the precedents are the relevant cases that are used to support the decisions made by the judges and the opinions of lawyers towards a given case. This relevance is referred to as the case-to-case reference relation. To efficiently find relevant cases from a large case pool, retrieval tools are widely used by legal practitioners. Existing legal case retrieval models mainly work by comparing the text representations of individual cases. Although they obtain a decent retrieval accuracy, the intrinsic case connectivity relationships among cases have not been well exploited for case encoding, therefore limiting the further improvement of retrieval performance. In a case pool, there are three types of case connectivity relationships: the case reference relationship, the case semantic relationship, and the case legal charge relationship. Due to the inductive manner in the task of legal case retrieval, using case reference as input is not applicable for testing. Thus, in this paper, a CaseLink model based on inductive graph learning is proposed to utilise the intrinsic case connectivity for legal case retrieval, a novel Global Case Graph is incorporated to represent both the case semantic relationship and the case legal charge relationship. A novel contrastive objective with a regularisation on the degree of case nodes is proposed to leverage the information carried by the case reference relationship to optimise the model. Extensive experiments have been conducted on two benchmark datasets, which demonstrate the state-of-the-art performance of CaseLink. The code has been released on https://github.com/yanran-tang/CaseLink.
Abstract:When handling streaming graphs, existing graph representation learning models encounter a catastrophic forgetting problem, where previously learned knowledge of these models is easily overwritten when learning with newly incoming graphs. In response, Continual Graph Learning emerges as a novel paradigm enabling graph representation learning from static to streaming graphs. Our prior work, CaT is a replay-based framework with a balanced continual learning procedure, which designs a small yet effective memory bank for replaying data by condensing incoming graphs. Although the CaT alleviates the catastrophic forgetting problem, there exist three issues: (1) The graph condensation algorithm derived in CaT only focuses on labelled nodes while neglecting abundant information carried by unlabelled nodes; (2) The continual training scheme of the CaT overemphasises on the previously learned knowledge, limiting the model capacity to learn from newly added memories; (3) Both the condensation process and replaying process of the CaT are time-consuming. In this paper, we propose a psudo-label guided memory bank (PUMA) CGL framework, extending from the CaT to enhance its efficiency and effectiveness by overcoming the above-mentioned weaknesses and limits. To fully exploit the information in a graph, PUMA expands the coverage of nodes during graph condensation with both labelled and unlabelled nodes. Furthermore, a training-from-scratch strategy is proposed to upgrade the previous continual learning scheme for a balanced training between the historical and the new graphs. Besides, PUMA uses a one-time prorogation and wide graph encoders to accelerate the graph condensation and the graph encoding process in the training stage to improve the efficiency of the whole framework. Extensive experiments on four datasets demonstrate the state-of-the-art performance and efficiency over existing methods.
Abstract:Legal case retrieval is an information retrieval task in the legal domain, which aims to retrieve relevant cases with a given query case. Recent research of legal case retrieval mainly relies on traditional bag-of-words models and language models. Although these methods have achieved significant improvement in retrieval accuracy, there are still two challenges: (1) Legal structural information neglect. Previous neural legal case retrieval models mostly encode the unstructured raw text of case into a case representation, which causes the lack of important legal structural information in a case and leads to poor case representation; (2) Lengthy legal text limitation. When using the powerful BERT-based models, there is a limit of input text lengths, which inevitably requires to shorten the input via truncation or division with a loss of legal context information. In this paper, a graph neural networks-based legal case retrieval model, CaseGNN, is developed to tackle these challenges. To effectively utilise the legal structural information during encoding, a case is firstly converted into a Text-Attributed Case Graph (TACG), followed by a designed Edge Graph Attention Layer and a readout function to obtain the case graph representation. The CaseGNN model is optimised with a carefully designed contrastive loss with easy and hard negative sampling. Since the text attributes in the case graph come from individual sentences, the restriction of using language models is further avoided without losing the legal context. Extensive experiments have been conducted on two benchmarks from COLIEE 2022 and COLIEE 2023, which demonstrate that CaseGNN outperforms other state-of-the-art legal case retrieval methods. The code has been released on https://github.com/yanran-tang/CaseGNN.
Abstract:Continual graph learning (CGL) is purposed to continuously update a graph model with graph data being fed in a streaming manner. Since the model easily forgets previously learned knowledge when training with new-coming data, the catastrophic forgetting problem has been the major focus in CGL. Recent replay-based methods intend to solve this problem by updating the model using both (1) the entire new-coming data and (2) a sampling-based memory bank that stores replayed graphs to approximate the distribution of historical data. After updating the model, a new replayed graph sampled from the incoming graph will be added to the existing memory bank. Despite these methods are intuitive and effective for the CGL, two issues are identified in this paper. Firstly, most sampling-based methods struggle to fully capture the historical distribution when the storage budget is tight. Secondly, a significant data imbalance exists in terms of the scales of the complex new-coming graph data and the lightweight memory bank, resulting in unbalanced training. To solve these issues, a Condense and Train (CaT) framework is proposed in this paper. Prior to each model update, the new-coming graph is condensed to a small yet informative synthesised replayed graph, which is then stored in a Condensed Graph Memory with historical replay graphs. In the continual learning phase, a Training in Memory scheme is used to update the model directly with the Condensed Graph Memory rather than the whole new-coming graph, which alleviates the data imbalance problem. Extensive experiments conducted on four benchmark datasets successfully demonstrate superior performances of the proposed CaT framework in terms of effectiveness and efficiency. The code has been released on https://github.com/superallen13/CaT-CGL.