Abstract:In the realm of political advertising, persuasion operates as a pivotal element within the broader framework of propaganda, exerting profound influences on public opinion and electoral outcomes. In this paper, we (1) introduce a lightweight model for persuasive text detection that achieves state-of-the-art performance in Subtask 3 of SemEval 2023 Task 3, while significantly reducing the computational resource requirements; and (2) leverage the proposed model to gain insights into political campaigning strategies on social media platforms by applying it to a real-world dataset we curated, consisting of Facebook political ads from the 2022 Australian Federal election campaign. Our study shows how subtleties can be found in persuasive political advertisements and presents a pragmatic approach to detect and analyze such strategies with limited resources, enhancing transparency in social media political campaigns.
Abstract:Text-to-Video Retrieval (TVR) aims to match videos with corresponding textual queries, yet the continual influx of new video content poses a significant challenge for maintaining system performance over time. In this work, we introduce the first benchmark for Continual Text-to-Video Retrieval (CTVR) to overcome these limitations. Our analysis reveals that current TVR methods based on pre-trained models struggle to retain plasticity when adapting to new tasks, while existing continual learning approaches experience catastrophic forgetting, resulting in semantic misalignment between historical queries and stored video features. To address these challenges, we propose StableFusion, a novel CTVR framework comprising two main components: the Frame Fusion Adapter (FFA), which captures temporal dynamics in video content while preserving model flexibility, and the Task-Aware Mixture-of-Experts (TAME), which maintains consistent semantic alignment between queries across tasks and the stored video features. Comprehensive evaluations on two benchmark datasets under various task settings demonstrate that StableFusion outperforms existing continual learning and TVR methods, achieving superior retrieval performance with minimal degradation on earlier tasks in the context of continuous video streams. Our code is available at: https://github.com/JasonCodeMaker/CTVR
Abstract:High-quality textual training data is essential for the success of multimodal data processing tasks, yet outputs from image captioning models like BLIP and GIT often contain errors and anomalies that are difficult to rectify using rule-based methods. While recent work addressing this issue has predominantly focused on using GPT models for data preprocessing on relatively simple public datasets, there is a need to explore a broader range of Large Language Models (LLMs) and tackle more challenging and diverse datasets. In this study, we investigate the use of multiple LLMs, including LLaMA 3.1 70B, GPT-4 Turbo, and Sonnet 3.5 v2, to refine and clean the textual outputs of BLIP and GIT. We assess the impact of LLM-assisted data cleaning by comparing downstream-task (SemEval 2024 Subtask "Multilabel Persuasion Detection in Memes") models trained on cleaned versus non-cleaned data. While our experimental results show improvements when using LLM-cleaned captions, statistical tests reveal that most of these improvements are not significant. This suggests that while LLMs have the potential to enhance data cleaning and repairing, their effectiveness may be limited depending on the context they are applied to, the complexity of the task, and the level of noise in the text. Our findings highlight the need for further research into the capabilities and limitations of LLMs in data preprocessing pipelines, especially when dealing with challenging datasets, contributing empirical evidence to the ongoing discussion about integrating LLMs into data preprocessing pipelines.
Abstract:Causal effect estimation (CEE) provides a crucial tool for predicting the unobserved counterfactual outcome for an entity. As CEE relaxes the requirement for ``perfect'' counterfactual samples (e.g., patients with identical attributes and only differ in treatments received) that are impractical to obtain and can instead operate on observational data, it is usually used in high-stake domains like medical treatment effect prediction. Nevertheless, in those high-stake domains, gathering a decently sized, fully labelled observational dataset remains challenging due to hurdles associated with costs, ethics, expertise and time needed, etc., of which medical treatment surveys are a typical example. Consequently, if the training dataset is small in scale, low generalization risks can hardly be achieved on any CEE algorithms. Unlike existing CEE methods that assume the constant availability of a dataset with abundant samples, in this paper, we study a more realistic CEE setting where the labelled data samples are scarce at the beginning, while more can be gradually acquired over the course of training -- assuredly under a limited budget considering their expensive nature. Then, the problem naturally comes down to actively selecting the best possible samples to be labelled, e.g., identifying the next subset of patients to conduct the treatment survey. However, acquiring quality data for reducing the CEE risk under limited labelling budgets remains under-explored until now. To fill the gap, we theoretically analyse the generalization risk from an intriguing perspective of progressively shrinking its upper bound, and develop a principled label acquisition pipeline exclusively for CEE tasks. With our analysis, we propose the Model Agnostic Causal Active Learning (MACAL) algorithm for batch-wise label acquisition, which aims to reduce both the CEE model's uncertainty and the post-acquisition ...
Abstract:While model fairness improvement has been explored previously, existing methods invariably rely on adjusting explicit sensitive attribute values in order to improve model fairness in downstream tasks. However, we observe a trend in which sensitive demographic information becomes inaccessible as public concerns around data privacy grow. In this paper, we propose a confidence-based hierarchical classifier structure called "Reckoner" for reliable fair model learning under the assumption of missing sensitive attributes. We first present results showing that if the dataset contains biased labels or other hidden biases, classifiers significantly increase the bias gap across different demographic groups in the subset with higher prediction confidence. Inspired by these findings, we devised a dual-model system in which a version of the model initialised with a high-confidence data subset learns from a version of the model initialised with a low-confidence data subset, enabling it to avoid biased predictions. Our experimental results show that Reckoner consistently outperforms state-of-the-art baselines in COMPAS dataset and New Adult dataset, considering both accuracy and fairness metrics.
Abstract:Irregular time series, where data points are recorded at uneven intervals, are prevalent in healthcare settings, such as emergency wards where vital signs and laboratory results are captured at varying times. This variability, which reflects critical fluctuations in patient health, is essential for informed clinical decision-making. Existing self-supervised learning research on irregular time series often relies on generic pretext tasks like forecasting, which may not fully utilise the signal provided by irregular time series. There is a significant need for specialised pretext tasks designed for the characteristics of irregular time series to enhance model performance and robustness, especially in scenarios with limited data availability. This paper proposes a novel pretraining framework, EMIT, an event-based masking for irregular time series. EMIT focuses on masking-based reconstruction in the latent space, selecting masking points based on the rate of change in the data. This method preserves the natural variability and timing of measurements while enhancing the model's ability to process irregular intervals without losing essential information. Extensive experiments on the MIMIC-III and PhysioNet Challenge datasets demonstrate the superior performance of our event-based masking strategy. The code has been released at https://github.com/hrishi-ds/EMIT .
Abstract:The ID-free recommendation paradigm has been proposed to address the limitation that traditional recommender systems struggle to model cold-start users or items with new IDs. Despite its effectiveness, this study uncovers that ID-free recommender systems are vulnerable to the proposed Text Simulation attack (TextSimu) which aims to promote specific target items. As a novel type of text poisoning attack, TextSimu exploits large language models (LLM) to alter the textual information of target items by simulating the characteristics of popular items. It operates effectively in both black-box and white-box settings, utilizing two key components: a unified popularity extraction module, which captures the essential characteristics of popular items, and an N-persona consistency simulation strategy, which creates multiple personas to collaboratively synthesize refined promotional textual descriptions for target items by simulating the popular items. To withstand TextSimu-like attacks, we further explore the detection approach for identifying LLM-generated promotional text. Extensive experiments conducted on three datasets demonstrate that TextSimu poses a more significant threat than existing poisoning attacks, while our defense method can detect malicious text of target items generated by TextSimu. By identifying the vulnerability, we aim to advance the development of more robust ID-free recommender systems.
Abstract:Modern recommender systems (RS) have profoundly enhanced user experience across digital platforms, yet they face significant threats from poisoning attacks. These attacks, aimed at manipulating recommendation outputs for unethical gains, exploit vulnerabilities in RS through injecting malicious data or intervening model training. This survey presents a unique perspective by examining these threats through the lens of an attacker, offering fresh insights into their mechanics and impacts. Concretely, we detail a systematic pipeline that encompasses four stages of a poisoning attack: setting attack goals, assessing attacker capabilities, analyzing victim architecture, and implementing poisoning strategies. The pipeline not only aligns with various attack tactics but also serves as a comprehensive taxonomy to pinpoint focuses of distinct poisoning attacks. Correspondingly, we further classify defensive strategies into two main categories: poisoning data filtering and robust training from the defender's perspective. Finally, we highlight existing limitations and suggest innovative directions for further exploration in this field.
Abstract:Incorporating Generative AI (GenAI) and Large Language Models (LLMs) in education can enhance teaching efficiency and enrich student learning. Current LLM usage involves conversational user interfaces (CUIs) for tasks like generating materials or providing feedback. However, this presents challenges including the need for educator expertise in AI and CUIs, ethical concerns with high-stakes decisions, and privacy risks. CUIs also struggle with complex tasks. To address these, we propose transitioning from CUIs to user-friendly applications leveraging LLMs via API calls. We present a framework for ethically incorporating GenAI into educational tools and demonstrate its application in our tool, Feedback Copilot, which provides personalized feedback on student assignments. Our evaluation shows the effectiveness of this approach, with implications for GenAI researchers, educators, and technologists. This work charts a course for the future of GenAI in education.
Abstract:Modern recommender systems (RS) have seen substantial success, yet they remain vulnerable to malicious activities, notably poisoning attacks. These attacks involve injecting malicious data into the training datasets of RS, thereby compromising their integrity and manipulating recommendation outcomes for gaining illicit profits. This survey paper provides a systematic and up-to-date review of the research landscape on Poisoning Attacks against Recommendation (PAR). A novel and comprehensive taxonomy is proposed, categorizing existing PAR methodologies into three distinct categories: Component-Specific, Goal-Driven, and Capability Probing. For each category, we discuss its mechanism in detail, along with associated methods. Furthermore, this paper highlights potential future research avenues in this domain. Additionally, to facilitate and benchmark the empirical comparison of PAR, we introduce an open-source library, ARLib, which encompasses a comprehensive collection of PAR models and common datasets. The library is released at https://github.com/CoderWZW/ARLib.