Abstract:The widespread adoption of smartphones and Location-Based Social Networks has led to a massive influx of spatio-temporal data, creating unparalleled opportunities for enhancing Point-of-Interest (POI) recommendation systems. These advanced POI systems are crucial for enriching user experiences, enabling personalized interactions, and optimizing decision-making processes in the digital landscape. However, existing surveys tend to focus on traditional approaches and few of them delve into cutting-edge developments, emerging architectures, as well as security considerations in POI recommendations. To address this gap, our survey stands out by offering a comprehensive, up-to-date review of POI recommendation systems, covering advancements in models, architectures, and security aspects. We systematically examine the transition from traditional models to advanced techniques such as large language models. Additionally, we explore the architectural evolution from centralized to decentralized and federated learning systems, highlighting the improvements in scalability and privacy. Furthermore, we address the increasing importance of security, examining potential vulnerabilities and privacy-preserving approaches. Our taxonomy provides a structured overview of the current state of POI recommendation, while we also identify promising directions for future research in this rapidly advancing field.
Abstract:The ID-free recommendation paradigm has been proposed to address the limitation that traditional recommender systems struggle to model cold-start users or items with new IDs. Despite its effectiveness, this study uncovers that ID-free recommender systems are vulnerable to the proposed Text Simulation attack (TextSimu) which aims to promote specific target items. As a novel type of text poisoning attack, TextSimu exploits large language models (LLM) to alter the textual information of target items by simulating the characteristics of popular items. It operates effectively in both black-box and white-box settings, utilizing two key components: a unified popularity extraction module, which captures the essential characteristics of popular items, and an N-persona consistency simulation strategy, which creates multiple personas to collaboratively synthesize refined promotional textual descriptions for target items by simulating the popular items. To withstand TextSimu-like attacks, we further explore the detection approach for identifying LLM-generated promotional text. Extensive experiments conducted on three datasets demonstrate that TextSimu poses a more significant threat than existing poisoning attacks, while our defense method can detect malicious text of target items generated by TextSimu. By identifying the vulnerability, we aim to advance the development of more robust ID-free recommender systems.
Abstract:Tripartite graph-based recommender systems markedly diverge from traditional models by recommending unique combinations such as user groups and item bundles. Despite their effectiveness, these systems exacerbate the longstanding cold-start problem in traditional recommender systems, because any number of user groups or item bundles can be formed among users or items. To address this issue, we introduce a Consistency and Discrepancy-based graph contrastive learning method for tripartite graph-based Recommendation. This approach leverages two novel meta-path-based metrics consistency and discrepancy to capture nuanced, implicit associations between the recommended objects and the recommendees. These metrics, indicative of high-order similarities, can be efficiently calculated with infinite graph convolutional networks layers under a multi-objective optimization framework, using the limit theory of GCN.
Abstract:Modern recommender systems (RS) have profoundly enhanced user experience across digital platforms, yet they face significant threats from poisoning attacks. These attacks, aimed at manipulating recommendation outputs for unethical gains, exploit vulnerabilities in RS through injecting malicious data or intervening model training. This survey presents a unique perspective by examining these threats through the lens of an attacker, offering fresh insights into their mechanics and impacts. Concretely, we detail a systematic pipeline that encompasses four stages of a poisoning attack: setting attack goals, assessing attacker capabilities, analyzing victim architecture, and implementing poisoning strategies. The pipeline not only aligns with various attack tactics but also serves as a comprehensive taxonomy to pinpoint focuses of distinct poisoning attacks. Correspondingly, we further classify defensive strategies into two main categories: poisoning data filtering and robust training from the defender's perspective. Finally, we highlight existing limitations and suggest innovative directions for further exploration in this field.
Abstract:The increasing prevalence of large-scale graphs poses a significant challenge for graph neural network training, attributed to their substantial computational requirements. In response, graph condensation (GC) emerges as a promising data-centric solution aiming to substitute the large graph with a small yet informative condensed graph to facilitate data-efficient GNN training. However, existing GC methods suffer from intricate optimization processes, necessitating excessive computing resources. In this paper, we revisit existing GC optimization strategies and identify two pervasive issues: 1. various GC optimization strategies converge to class-level node feature matching between the original and condensed graphs, making the optimization target coarse-grained despite the complex computations; 2. to bridge the original and condensed graphs, existing GC methods rely on a Siamese graph network architecture that requires time-consuming bi-level optimization with iterative gradient computations. To overcome these issues, we propose a training-free GC framework termed Class-partitioned Graph Condensation (CGC), which refines the node feature matching from the class-to-class paradigm into a novel class-to-node paradigm. Remarkably, this refinement also simplifies the GC optimization as a class partition problem, which can be efficiently solved by any clustering methods. Moreover, CGC incorporates a pre-defined graph structure to enable a closed-form solution for condensed node features, eliminating the back-and-forth gradient descent in existing GC approaches without sacrificing accuracy. Extensive experiments demonstrate that CGC achieves state-of-the-art performance with a more efficient condensation process. For instance, compared with the seminal GC method (i.e., GCond), CGC condenses the largest Reddit graph within 10 seconds, achieving a 2,680X speedup and a 1.4% accuracy increase.
Abstract:Cross-domain Recommendation (CDR) as one of the effective techniques in alleviating the data sparsity issues has been widely studied in recent years. However, previous works may cause domain privacy leakage since they necessitate the aggregation of diverse domain data into a centralized server during the training process. Though several studies have conducted privacy preserving CDR via Federated Learning (FL), they still have the following limitations: 1) They need to upload users' personal information to the central server, posing the risk of leaking user privacy. 2) Existing federated methods mainly rely on atomic item IDs to represent items, which prevents them from modeling items in a unified feature space, increasing the challenge of knowledge transfer among domains. 3) They are all based on the premise of knowing overlapped users between domains, which proves impractical in real-world applications. To address the above limitations, we focus on Privacy-preserving Cross-domain Recommendation (PCDR) and propose PFCR as our solution. For Limitation 1, we develop a FL schema by exclusively utilizing users' interactions with local clients and devising an encryption method for gradient encryption. For Limitation 2, we model items in a universal feature space by their description texts. For Limitation 3, we initially learn federated content representations, harnessing the generality of natural language to establish bridges between domains. Subsequently, we craft two prompt fine-tuning strategies to tailor the pre-trained model to the target domain. Extensive experiments on two real-world datasets demonstrate the superiority of our PFCR method compared to the SOTA approaches.
Abstract:The burgeoning volume of graph data poses significant challenges in storage, transmission, and particularly the training of graph neural networks (GNNs). To address these challenges, graph condensation (GC) has emerged as an innovative solution. GC focuses on synthesizing a compact yet highly representative graph, on which GNNs can achieve performance comparable to trained on the large original graph. The notable efficacy of GC and its broad prospects have garnered significant attention and spurred extensive research. This survey paper provides an up-to-date and systematic overview of GC, organizing existing research into four categories aligned with critical GC evaluation criteria: effectiveness, generalization, fairness, and efficiency. To facilitate an in-depth and comprehensive understanding of GC, we examine various methods under each category and thoroughly discuss two essential components within GC: optimization strategies and condensed graph generation. Additionally, we introduce the applications of GC in a variety of fields, and highlight the present challenges and novel insights in GC, promoting advancements in future research.
Abstract:Modern recommender systems (RS) have seen substantial success, yet they remain vulnerable to malicious activities, notably poisoning attacks. These attacks involve injecting malicious data into the training datasets of RS, thereby compromising their integrity and manipulating recommendation outcomes for gaining illicit profits. This survey paper provides a systematic and up-to-date review of the research landscape on Poisoning Attacks against Recommendation (PAR). A novel and comprehensive taxonomy is proposed, categorizing existing PAR methodologies into three distinct categories: Component-Specific, Goal-Driven, and Capability Probing. For each category, we discuss its mechanism in detail, along with associated methods. Furthermore, this paper highlights potential future research avenues in this domain. Additionally, to facilitate and benchmark the empirical comparison of PAR, we introduce an open-source library, ARLib, which encompasses a comprehensive collection of PAR models and common datasets. The library is released at https://github.com/CoderWZW/ARLib.
Abstract:Contrastive learning (CL) has recently gained significant popularity in the field of recommendation. Its ability to learn without heavy reliance on labeled data is a natural antidote to the data sparsity issue. Previous research has found that CL can not only enhance recommendation accuracy but also inadvertently exhibit remarkable robustness against noise. However, this paper identifies a vulnerability of CL-based recommender systems: Compared with their non-CL counterparts, they are even more susceptible to poisoning attacks that aim to promote target items. Our analysis points to the uniform dispersion of representations led by the CL loss as the very factor that accounts for this vulnerability. We further theoretically and empirically demonstrate that the optimization of CL loss can lead to smooth spectral values of representations. Based on these insights, we attempt to reveal the potential poisoning attacks against CL-based recommender systems. The proposed attack encompasses a dual-objective framework: One that induces a smoother spectral value distribution to amplify the CL loss's inherent dispersion effect, named dispersion promotion; and the other that directly elevates the visibility of target items, named rank promotion. We validate the destructiveness of our attack model through extensive experimentation on four datasets. By shedding light on these vulnerabilities, we aim to facilitate the development of more robust CL-based recommender systems.
Abstract:Cross-Domain Recommendation (CDR) stands as a pivotal technology addressing issues of data sparsity and cold start by transferring general knowledge from the source to the target domain. However, existing CDR models suffer limitations in adaptability across various scenarios due to their inherent complexity. To tackle this challenge, recent advancements introduce universal CDR models that leverage shared embeddings to capture general knowledge across domains and transfer it through "Multi-task Learning" or "Pre-train, Fine-tune" paradigms. However, these models often overlook the broader structural topology that spans domains and fail to align training objectives, potentially leading to negative transfer. To address these issues, we propose a motif-based prompt learning framework, MOP, which introduces motif-based shared embeddings to encapsulate generalized domain knowledge, catering to both intra-domain and inter-domain CDR tasks. Specifically, we devise three typical motifs: butterfly, triangle, and random walk, and encode them through a Motif-based Encoder to obtain motif-based shared embeddings. Moreover, we train MOP under the "Pre-training \& Prompt Tuning" paradigm. By unifying pre-training and recommendation tasks as a common motif-based similarity learning task and integrating adaptable prompt parameters to guide the model in downstream recommendation tasks, MOP excels in transferring domain knowledge effectively. Experimental results on four distinct CDR tasks demonstrate the effectiveness of MOP than the state-of-the-art models.