Abstract:Recent DiT-based text-to-image models increasingly adopt LLMs as text encoders, yet text conditioning remains largely static and often utilizes only a single LLM layer, despite pronounced semantic hierarchy across LLM layers and non-stationary denoising dynamics over both diffusion time and network depth. To better match the dynamic process of DiT generation and thereby enhance the diffusion model's generative capability, we introduce a unified normalized convex fusion framework equipped with lightweight gates to systematically organize multi-layer LLM hidden states via time-wise, depth-wise, and joint fusion. Experiments establish Depth-wise Semantic Routing as the superior conditioning strategy, consistently improving text-image alignment and compositional generation (e.g., +9.97 on the GenAI-Bench Counting task). Conversely, we find that purely time-wise fusion can paradoxically degrade visual generation fidelity. We attribute this to a train-inference trajectory mismatch: under classifier-free guidance, nominal timesteps fail to track the effective SNR, causing semantically mistimed feature injection during inference. Overall, our results position depth-wise routing as a strong and effective baseline and highlight the critical need for trajectory-aware signals to enable robust time-dependent conditioning.
Abstract:World models have emerged as a critical frontier in AI research, aiming to enhance large models by infusing them with physical dynamics and world knowledge. The core objective is to enable agents to understand, predict, and interact with complex environments. However, current research landscape remains fragmented, with approaches predominantly focused on injecting world knowledge into isolated tasks, such as visual prediction, 3D estimation, or symbol grounding, rather than establishing a unified definition or framework. While these task-specific integrations yield performance gains, they often lack the systematic coherence required for holistic world understanding. In this paper, we analyze the limitations of such fragmented approaches and propose a unified design specification for world models. We suggest that a robust world model should not be a loose collection of capabilities but a normative framework that integrally incorporates interaction, perception, symbolic reasoning, and spatial representation. This work aims to provide a structured perspective to guide future research toward more general, robust, and principled models of the world.
Abstract:While vision-language-action (VLA) models for embodied agents integrate perception, reasoning, and control, they remain constrained by two critical weaknesses: first, during grasping tasks, the action tokens generated by the language model often exhibit subtle spatial deviations from the target object, resulting in grasp failures; second, they lack the ability to reliably recognize task completion, which leads to redundant actions and frequent timeout errors. To address these challenges and enhance robustness, we propose a lightweight, training-free framework, VLA-SCT. This framework operates as a self-correcting control loop, combining data-driven action refinement with conditional logic for termination. Consequently, compared to baseline approaches, our method achieves consistent improvements across all datasets in the LIBERO benchmark, significantly increasing the success rate of fine manipulation tasks and ensuring accurate task completion, thereby promoting the deployment of more reliable VLA agents in complex, unstructured environments.
Abstract:The prefill stage of long-context Retrieval-Augmented Generation (RAG) is severely bottlenecked by computational overhead. To mitigate this, recent methods assemble pre-calculated KV caches of retrieved RAG documents (by a user query) and reprocess selected tokens to recover cross-attention between these pre-calculated KV caches. However, we identify a fundamental "crowding-out effect" in current token selection criteria: globally salient but user-query-irrelevant tokens saturate the limited recomputation budget, displacing the tokens truly essential for answering the user query and degrading inference accuracy. We propose ProphetKV, a user-query-driven KV Cache reuse method for RAG scenarios. ProphetKV dynamically prioritizes tokens based on their semantic relevance to the user query and employs a dual-stage recomputation pipeline to fuse layer-wise attention metrics into a high-utility set. By ensuring the recomputation budget is dedicated to bridging the informational gap between retrieved context and the user query, ProphetKV achieves high-fidelity attention recovery with minimal overhead. Our extensive evaluation results show that ProphetKV retains 96%-101% of full-prefill accuracy with only a 20% recomputation ratio, while achieving accuracy improvements of 8.8%-24.9% on RULER and 18.6%-50.9% on LongBench over the state-of-the-art approaches (e.g., CacheBlend, EPIC, and KVShare).
Abstract:Information-seeking agents have emerged as a powerful paradigm for solving knowledge-intensive tasks. Existing information-seeking agents are typically specialized for open web, documents, or local knowledge bases, which constrains scalability and cross-domain generalization. In this work, we investigate how to consolidate heterogeneous information-seeking agents into a single foundation agentic model. We study two complementary consolidation strategies: data-level consolidation, which jointly trains a unified model on a mixture of domain-specific datasets, and parameter-level consolidation, which merges independently trained agent models at the parameter level. Our analysis compares these approaches in terms of performance retention, cross-domain generalization, and interference across information-seeking behaviors. Our results show that data-level consolidation remains a strong and stable baseline, while parameter-level consolidation offers a promising, efficient alternative but suffers from interference and robustness challenges. We further identify key design factors for effective agent consolidation at the parameter level, including fine-grained merging granularity, awareness of task heterogeneity, and principled consensus strategy.
Abstract:Recent advances in Vision Language Models (VLMs) have driven significant progress in visual reasoning. However, open-source VLMs still lag behind proprietary systems, largely due to the lack of high-quality reasoning data. Existing datasets offer limited coverage of challenging domains such as STEM diagrams and visual puzzles, and lack consistent, long-form Chain-of-Thought (CoT) annotations essential for eliciting strong reasoning capabilities. To bridge this gap, we introduce MMFineReason, a large-scale multimodal reasoning dataset comprising 1.8M samples and 5.1B solution tokens, featuring high-quality reasoning annotations distilled from Qwen3-VL-235B-A22B-Thinking. The dataset is established via a systematic three-stage pipeline: (1) large-scale data collection and standardization, (2) CoT rationale generation, and (3) comprehensive selection based on reasoning quality and difficulty awareness. The resulting dataset spans STEM problems, visual puzzles, games, and complex diagrams, with each sample annotated with visually grounded reasoning traces. We fine-tune Qwen3-VL-Instruct on MMFineReason to develop MMFineReason-2B/4B/8B versions. Our models establish new state-of-the-art results for their size class. Notably, MMFineReason-4B succesfully surpasses Qwen3-VL-8B-Thinking, and MMFineReason-8B even outperforms Qwen3-VL-30B-A3B-Thinking while approaching Qwen3-VL-32B-Thinking, demonstrating remarkable parameter efficiency. Crucially, we uncover a "less is more" phenomenon via our difficulty-aware filtering strategy: a subset of just 7\% (123K samples) achieves performance comparable to the full dataset. Notably, we reveal a synergistic effect where reasoning-oriented data composition simultaneously boosts general capabilities.
Abstract:In real-world data science and enterprise decision-making, critical information is often fragmented across directly queryable structured sources (e.g., SQL, CSV) and "zombie data" locked in unstructured visual documents (e.g., scanned reports, invoice images). Existing data analytics agents are predominantly limited to processing structured data, failing to activate and correlate this high-value visual information, thus creating a significant gap with industrial needs. To bridge this gap, we introduce DataCross, a novel benchmark and collaborative agent framework for unified, insight-driven analysis across heterogeneous data modalities. DataCrossBench comprises 200 end-to-end analysis tasks across finance, healthcare, and other domains. It is constructed via a human-in-the-loop reverse-synthesis pipeline, ensuring realistic complexity, cross-source dependency, and verifiable ground truth. The benchmark categorizes tasks into three difficulty tiers to evaluate agents' capabilities in visual table extraction, cross-modal alignment, and multi-step joint reasoning. We also propose the DataCrossAgent framework, inspired by the "divide-and-conquer" workflow of human analysts. It employs specialized sub-agents, each an expert on a specific data source, which are coordinated via a structured workflow of Intra-source Deep Exploration, Key Source Identification, and Contextual Cross-pollination. A novel reReAct mechanism enables robust code generation and debugging for factual verification. Experimental results show that DataCrossAgent achieves a 29.7% improvement in factuality over GPT-4o and exhibits superior robustness on high-difficulty tasks, effectively activating fragmented "zombie data" for insightful, cross-modal analysis.
Abstract:The performance of modern AI systems is fundamentally constrained by the quality of their underlying kernels, which translate high-level algorithmic semantics into low-level hardware operations. Achieving near-optimal kernels requires expert-level understanding of hardware architectures and programming models, making kernel engineering a critical but notoriously time-consuming and non-scalable process. Recent advances in large language models (LLMs) and LLM-based agents have opened new possibilities for automating kernel generation and optimization. LLMs are well-suited to compress expert-level kernel knowledge that is difficult to formalize, while agentic systems further enable scalable optimization by casting kernel development as an iterative, feedback-driven loop. Rapid progress has been made in this area. However, the field remains fragmented, lacking a systematic perspective for LLM-driven kernel generation. This survey addresses this gap by providing a structured overview of existing approaches, spanning LLM-based approaches and agentic optimization workflows, and systematically compiling the datasets and benchmarks that underpin learning and evaluation in this domain. Moreover, key open challenges and future research directions are further outlined, aiming to establish a comprehensive reference for the next generation of automated kernel optimization. To keep track of this field, we maintain an open-source GitHub repository at https://github.com/flagos-ai/awesome-LLM-driven-kernel-generation.
Abstract:Chart reasoning is a critical capability for Vision Language Models (VLMs). However, the development of open-source models is severely hindered by the lack of high-quality training data. Existing datasets suffer from a dual challenge: synthetic charts are often simplistic and repetitive, while the associated QA pairs are prone to hallucinations and lack the reasoning depth required for complex tasks. To bridge this gap, we propose ChartVerse, a scalable framework designed to synthesize complex charts and reliable reasoning data from scratch. (1) To address the bottleneck of simple patterns, we first introduce Rollout Posterior Entropy (RPE), a novel metric that quantifies chart complexity. Guided by RPE, we develop complexity-aware chart coder to autonomously synthesize diverse, high-complexity charts via executable programs. (2) To guarantee reasoning rigor, we develop truth-anchored inverse QA synthesis. Diverging from standard generation, we adopt an answer-first paradigm: we extract deterministic answers directly from the source code, generate questions conditional on these anchors, and enforce strict consistency verification. To further elevate difficulty and reasoning depth, we filter samples based on model fail-rate and distill high-quality Chain-of-Thought (CoT) reasoning. We curate ChartVerse-SFT-600K and ChartVerse-RL-40K using Qwen3-VL-30B-A3B-Thinking as the teacher. Experimental results demonstrate that ChartVerse-8B achieves state-of-the-art performance, notably surpassing its teacher and rivaling the stronger Qwen3-VL-32B-Thinking.
Abstract:Domain-specific knowledge graphs (DKGs) often lack coverage compared to general knowledge graphs (GKGs). To address this, we introduce Domain-specific Knowledge Graph Fusion (DKGF), a novel task that enriches DKGs by integrating relevant facts from GKGs. DKGF faces two key challenges: high ambiguity in domain relevance and misalignment in knowledge granularity across graphs. We propose ExeFuse, a simple yet effective Fact-as-Program paradigm. It treats each GKG fact as a latent semantic program, maps abstract relations to granularity-aware operators, and verifies domain relevance via program executability on the target DKG. This unified probabilistic framework jointly resolves relevance and granularity issues. We construct two benchmarks, DKGF(W-I) and DKGF(Y-I), with 21 evaluation configurations. Extensive experiments validate the task's importance and our model's effectiveness, providing the first standardized testbed for DKGF.