Abstract:ANNS for embedded vector representations of texts is commonly used in information retrieval, with two important information representations being sparse and dense vectors. While it has been shown that combining these representations improves accuracy, the current method of conducting sparse and dense vector searches separately suffers from low scalability and high system complexity. Alternatively, building a unified index faces challenges with accuracy and efficiency. To address these issues, we propose a graph-based ANNS algorithm for dense-sparse hybrid vectors. Firstly, we propose a distribution alignment method to improve accuracy, which pre-samples dense and sparse vectors to analyze their distance distribution statistic, resulting in a 1%$\sim$9% increase in accuracy. Secondly, to improve efficiency, we design an adaptive two-stage computation strategy that initially computes dense distances only and later computes hybrid distances. Further, we prune the sparse vectors to speed up the calculation. Compared to naive implementation, we achieve $\sim2.1\times$ acceleration. Thorough experiments show that our algorithm achieves 8.9x$\sim$11.7x throughput at equal accuracy compared to existing hybrid vector search algorithms.
Abstract:The field of Multimodal Sentiment Analysis (MSA) has recently witnessed an emerging direction seeking to tackle the issue of data incompleteness. Recognizing that the language modality typically contains dense sentiment information, we consider it as the dominant modality and present an innovative Language-dominated Noise-resistant Learning Network (LNLN) to achieve robust MSA. The proposed LNLN features a dominant modality correction (DMC) module and dominant modality based multimodal learning (DMML) module, which enhances the model's robustness across various noise scenarios by ensuring the quality of dominant modality representations. Aside from the methodical design, we perform comprehensive experiments under random data missing scenarios, utilizing diverse and meaningful settings on several popular datasets (\textit{e.g.,} MOSI, MOSEI, and SIMS), providing additional uniformity, transparency, and fairness compared to existing evaluations in the literature. Empirically, LNLN consistently outperforms existing baselines, demonstrating superior performance across these challenging and extensive evaluation metrics.
Abstract:Accurately reconstructing dense and semantically annotated 3D meshes from monocular images remains a challenging task due to the lack of geometry guidance and imperfect view-dependent 2D priors. Though we have witnessed recent advancements in implicit neural scene representations enabling precise 2D rendering simply from multi-view images, there have been few works addressing 3D scene understanding with monocular priors alone. In this paper, we propose MOSE, a neural field semantic reconstruction approach to lift inferred image-level noisy priors to 3D, producing accurate semantics and geometry in both 3D and 2D space. The key motivation for our method is to leverage generic class-agnostic segment masks as guidance to promote local consistency of rendered semantics during training. With the help of semantics, we further apply a smoothness regularization to texture-less regions for better geometric quality, thus achieving mutual benefits of geometry and semantics. Experiments on the ScanNet dataset show that our MOSE outperforms relevant baselines across all metrics on tasks of 3D semantic segmentation, 2D semantic segmentation and 3D surface reconstruction.
Abstract:Face morphing attack detection (MAD) algorithms have become essential to overcome the vulnerability of face recognition systems. To solve the lack of large-scale and public-available datasets due to privacy concerns and restrictions, in this work we propose a new method to generate a synthetic face morphing dataset with 2450 identities and more than 100k morphs. The proposed synthetic face morphing dataset is unique for its high-quality samples, different types of morphing algorithms, and the generalization for both single and differential morphing attack detection algorithms. For experiments, we apply face image quality assessment and vulnerability analysis to evaluate the proposed synthetic face morphing dataset from the perspective of biometric sample quality and morphing attack potential on face recognition systems. The results are benchmarked with an existing SOTA synthetic dataset and a representative non-synthetic and indicate improvement compared with the SOTA. Additionally, we design different protocols and study the applicability of using the proposed synthetic dataset on training morphing attack detection algorithms.
Abstract:In the pursuit of enhancing domain-specific Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) emerges as a promising solution to mitigate issues such as hallucinations, outdated knowledge, and limited expertise in highly specialized queries. However, existing approaches to RAG fall short by neglecting system state variables, which are crucial for ensuring adaptive control, retrieval halting, and system convergence. In this paper, we introduce the TC-RAG through rigorous proof, a novel framework that addresses these challenges by incorporating a Turing Complete System to manage state variables, thereby enabling more efficient and accurate knowledge retrieval. By leveraging a memory stack system with adaptive retrieval, reasoning, and planning capabilities, TC-RAG not only ensures the controlled halting of retrieval processes but also mitigates the accumulation of erroneous knowledge via Push and Pop actions. In the case study of the medical domain, our extensive experiments on real-world healthcare datasets demonstrate the superiority of TC-RAG over existing methods in accuracy by over 7.20\%. Our dataset and code have been available at https://https://github.com/Artessay/SAMA.git.
Abstract:Single-pixel imaging (SPI) using a single-pixel detector is an unconventional imaging method, which has great application prospects in many fields to realize high-performance imaging. In especial, the recent proposed catadioptric panoramic ghost imaging (CPGI) extends the application potential of SPI to high-performance imaging at a wide field of view (FOV) with recent growing demands. However, the resolution of CPGI is limited by hardware parameters of the digital micromirror device (DMD), which may not meet ultrahigh-resolution panoramic imaging needs that require detailed information. Therefore, to overcome the resolution limitation of CPGI, we propose a panoramic SPI based on rotational subdivision (RSPSI). The key of the proposed RSPSI is to obtain the entire panoramic scene by the rotation-scanning with a rotating mirror tilted 45{\deg}, so that one single pattern that only covers one sub-Fov with a small FOV can complete a uninterrupted modulation on the entire panoramic FOV during a once-through pattern projection. Then, based on temporal resolution subdivision, images sequence of sub-Fovs subdivided from the entire panoramic FOV can be reconstructed with pixels-level or even subpixels-level horizontal shifting adjacently. Experimental results using a proof-of-concept setup show that the panoramic image can be obtained with 10428*543 of 5,662,404 pixels, which is more than 9.6 times higher than the resolution limit of the CPGI using the same DMD. To our best knowledge, the RSPSI is the first to achieve a megapixel resolution via SPI, which can provide potential applications in fields requiring the imaging with ultrahigh-resolution and wide FOV.
Abstract:Point-to-point and periodic motions are ubiquitous in the world of robotics. To master these motions, Autonomous Dynamic System (DS) based algorithms are fundamental in the domain of Learning from Demonstration (LfD). However, these algorithms face the significant challenge of balancing precision in learning with the maintenance of system stability. This paper addresses this challenge by presenting a novel ADS algorithm that leverages neural network technology. The proposed algorithm is designed to distill essential knowledge from demonstration data, ensuring stability during the learning of both point-to-point and periodic motions. For point-to-point motions, a neural Lyapunov function is proposed to align with the provided demonstrations. In the case of periodic motions, the neural Lyapunov function is used with the transversal contraction to ensure that all generated motions converge to a stable limit cycle. The model utilizes a streamlined neural network architecture, adept at achieving dual objectives: optimizing learning accuracy while maintaining global stability. To thoroughly assess the efficacy of the proposed algorithm, rigorous evaluations are conducted using the LASA dataset and a manually designed dataset. These assessments were complemented by empirical validation through robotic experiments, providing robust evidence of the algorithm's performance
Abstract:Cardiac magnetic resonance imaging (MRI) has emerged as a clinically gold-standard technique for diagnosing cardiac diseases, thanks to its ability to provide diverse information with multiple modalities and anatomical views. Accelerated cardiac MRI is highly expected to achieve time-efficient and patient-friendly imaging, and then advanced image reconstruction approaches are required to recover high-quality, clinically interpretable images from undersampled measurements. However, the lack of publicly available cardiac MRI k-space dataset in terms of both quantity and diversity has severely hindered substantial technological progress, particularly for data-driven artificial intelligence. Here, we provide a standardized, diverse, and high-quality CMRxRecon2024 dataset to facilitate the technical development, fair evaluation, and clinical transfer of cardiac MRI reconstruction approaches, towards promoting the universal frameworks that enable fast and robust reconstructions across different cardiac MRI protocols in clinical practice. To the best of our knowledge, the CMRxRecon2024 dataset is the largest and most diverse publicly available cardiac k-space dataset. It is acquired from 330 healthy volunteers, covering commonly used modalities, anatomical views, and acquisition trajectories in clinical cardiac MRI workflows. Besides, an open platform with tutorials, benchmarks, and data processing tools is provided to facilitate data usage, advanced method development, and fair performance evaluation.
Abstract:In this report, we present our approach for the Natural Language Query track and Goal Step track of the Ego4D Episodic Memory Benchmark at CVPR 2024. Both challenges require the localization of actions within long video sequences using textual queries. To enhance localization accuracy, our method not only processes the temporal information of videos but also identifies fine-grained objects spatially within the frames. To this end, we introduce a novel approach, termed ObjectNLQ, which incorporates an object branch to augment the video representation with detailed object information, thereby improving grounding efficiency. ObjectNLQ achieves a mean R@1 of 23.15, ranking 2nd in the Natural Language Queries Challenge, and gains 33.00 in terms of the metric R@1, IoU=0.3, ranking 3rd in the Goal Step Challenge. Our code will be released at https://github.com/Yisen-Feng/ObjectNLQ.
Abstract:In this report, we present our champion solution for Ego4D EgoSchema Challenge in CVPR 2024. To deeply integrate the powerful egocentric captioning model and question reasoning model, we propose a novel Hierarchical Comprehension scheme for egocentric video Question Answering, named HCQA. It consists of three stages: Fine-grained Caption Generation, Context-driven Summarization, and Inference-guided Answering. Given a long-form video, HCQA captures local detailed visual information and global summarised visual information via Fine-grained Caption Generation and Context-driven Summarization, respectively. Then in Inference-guided Answering, HCQA utilizes this hierarchical information to reason and answer given question. On the EgoSchema blind test set, HCQA achieves 75% accuracy in answering over 5,000 human curated multiple-choice questions. Our code will be released at https://github.com/Hyu-Zhang/HCQA.