IEEE Fellow
Abstract:This paper introduces Bifr\"ost, a novel 3D-aware framework that is built upon diffusion models to perform instruction-based image composition. Previous methods concentrate on image compositing at the 2D level, which fall short in handling complex spatial relationships ($\textit{e.g.}$, occlusion). Bifr\"ost addresses these issues by training MLLM as a 2.5D location predictor and integrating depth maps as an extra condition during the generation process to bridge the gap between 2D and 3D, which enhances spatial comprehension and supports sophisticated spatial interactions. Our method begins by fine-tuning MLLM with a custom counterfactual dataset to predict 2.5D object locations in complex backgrounds from language instructions. Then, the image-compositing model is uniquely designed to process multiple types of input features, enabling it to perform high-fidelity image compositions that consider occlusion, depth blur, and image harmonization. Extensive qualitative and quantitative evaluations demonstrate that Bifr\"ost significantly outperforms existing methods, providing a robust solution for generating realistically composed images in scenarios demanding intricate spatial understanding. This work not only pushes the boundaries of generative image compositing but also reduces reliance on expensive annotated datasets by effectively utilizing existing resources in innovative ways.
Abstract:Diffusion models have recently achieved great success in the synthesis of high-quality images and videos. However, the existing denoising techniques in diffusion models are commonly based on step-by-step noise predictions, which suffers from high computation cost, resulting in a prohibitive latency for interactive applications. In this paper, we propose AdaptiveDiffusion to relieve this bottleneck by adaptively reducing the noise prediction steps during the denoising process. Our method considers the potential of skipping as many noise prediction steps as possible while keeping the final denoised results identical to the original full-step ones. Specifically, the skipping strategy is guided by the third-order latent difference that indicates the stability between timesteps during the denoising process, which benefits the reusing of previous noise prediction results. Extensive experiments on image and video diffusion models demonstrate that our method can significantly speed up the denoising process while generating identical results to the original process, achieving up to an average 2~5x speedup without quality degradation.
Abstract:Recently, differentiable mask pruning methods optimize the continuous relaxation architecture (soft network) as the proxy of the pruned discrete network (hard network) for superior sub-architecture search. However, due to the agnostic impact of the discretization process, the hard network struggles with the equivalent representational capacity as the soft network, namely discretization gap, which severely spoils the pruning performance. In this paper, we first investigate the discretization gap and propose a novel structural differentiable mask pruning framework named S2HPruner to bridge the discretization gap in a one-stage manner. In the training procedure, SH2Pruner forwards both the soft network and its corresponding hard network, then distills the hard network under the supervision of the soft network. To optimize the mask and prevent performance degradation, we propose a decoupled bidirectional knowledge distillation. It blocks the weight updating from the hard to the soft network while maintaining the gradient corresponding to the mask. Compared with existing pruning arts, S2HPruner achieves surpassing pruning performance without fine-tuning on comprehensive benchmarks, including CIFAR-100, Tiny ImageNet, and ImageNet with a variety of network architectures. Besides, investigation and analysis experiments explain the effectiveness of S2HPruner. Codes will be released soon.
Abstract:Manipulation of large objects over long horizons (such as carts in a warehouse) is an essential skill for deployable robotic systems. Large objects require mobile manipulation which involves simultaneous manipulation, navigation, and movement with the object in tow. In many real-world situations, object dynamics are incredibly complex, such as the interaction of an office chair (with a rotating base and five caster wheels) and the ground. We present a hierarchical algorithm for long-horizon robot manipulation problems in which the dynamics are partially unknown. We observe that diffusion-based behavior cloning is highly effective for short-horizon problems with unknown dynamics, so we decompose the problem into an abstract high-level, obstacle-aware motion-planning problem that produces a waypoint sequence. We use a short-horizon, relative-motion diffusion policy to achieve the waypoints in sequence. We train mobile manipulation policies on a Spot robot that has to push and pull an office chair. Our hierarchical manipulation policy performs consistently better, especially when the horizon increases, compared to a diffusion policy trained on long-horizon demonstrations or motion planning assuming a rigidly-attached object (success rate of 8 (versus 0 and 5 respectively) out of 10 runs). Importantly, our learned policy generalizes to new layouts, grasps, chairs, and flooring that induces more friction, without any further training, showing promise for other complex mobile manipulation problems. Project Page: https://yravan.github.io/plannerorderedpolicy/
Abstract:Reconstructing 3D scenes from multiple viewpoints is a fundamental task in stereo vision. Recently, advances in generalizable 3D Gaussian Splatting have enabled high-quality novel view synthesis for unseen scenes from sparse input views by feed-forward predicting per-pixel Gaussian parameters without extra optimization. However, existing methods typically generate single-scale 3D Gaussians, which lack representation of both large-scale structure and texture details, resulting in mislocation and artefacts. In this paper, we propose a novel framework, HiSplat, which introduces a hierarchical manner in generalizable 3D Gaussian Splatting to construct hierarchical 3D Gaussians via a coarse-to-fine strategy. Specifically, HiSplat generates large coarse-grained Gaussians to capture large-scale structures, followed by fine-grained Gaussians to enhance delicate texture details. To promote inter-scale interactions, we propose an Error Aware Module for Gaussian compensation and a Modulating Fusion Module for Gaussian repair. Our method achieves joint optimization of hierarchical representations, allowing for novel view synthesis using only two-view reference images. Comprehensive experiments on various datasets demonstrate that HiSplat significantly enhances reconstruction quality and cross-dataset generalization compared to prior single-scale methods. The corresponding ablation study and analysis of different-scale 3D Gaussians reveal the mechanism behind the effectiveness. Project website: https://open3dvlab.github.io/HiSplat/
Abstract:Current Pose-Guided Person Image Synthesis (PGPIS) methods depend heavily on large amounts of labeled triplet data to train the generator in a supervised manner. However, they often falter when applied to in-the-wild samples, primarily due to the distribution gap between the training datasets and real-world test samples. While some researchers aim to enhance model generalizability through sophisticated training procedures, advanced architectures, or by creating more diverse datasets, we adopt the test-time fine-tuning paradigm to customize a pre-trained Text2Image (T2I) model. However, naively applying test-time tuning results in inconsistencies in facial identities and appearance attributes. To address this, we introduce a Visual Consistency Module (VCM), which enhances appearance consistency by combining the face, text, and image embedding. Our approach, named OnePoseTrans, requires only a single source image to generate high-quality pose transfer results, offering greater stability than state-of-the-art data-driven methods. For each test case, OnePoseTrans customizes a model in around 48 seconds with an NVIDIA V100 GPU.
Abstract:Machine/deep learning models have been widely adopted for predicting the configuration performance of software systems. However, a crucial yet unaddressed challenge is how to cater for the sparsity inherited from the configuration landscape: the influence of configuration options (features) and the distribution of data samples are highly sparse. In this paper, we propose a model-agnostic and sparsity-robust framework for predicting configuration performance, dubbed DaL, based on the new paradigm of dividable learning that builds a model via "divide-and-learn". To handle sample sparsity, the samples from the configuration landscape are divided into distant divisions, for each of which we build a sparse local model, e.g., regularized Hierarchical Interaction Neural Network, to deal with the feature sparsity. A newly given configuration would then be assigned to the right model of division for the final prediction. Further, DaL adaptively determines the optimal number of divisions required for a system and sample size without any extra training or profiling. Experiment results from 12 real-world systems and five sets of training data reveal that, compared with the state-of-the-art approaches, DaL performs no worse than the best counterpart on 44 out of 60 cases with up to 1.61x improvement on accuracy; requires fewer samples to reach the same/better accuracy; and producing acceptable training overhead. In particular, the mechanism that adapted the parameter d can reach the optimal value for 76.43% of the individual runs. The result also confirms that the paradigm of dividable learning is more suitable than other similar paradigms such as ensemble learning for predicting configuration performance. Practically, DaL considerably improves different global models when using them as the underlying local models, which further strengthens its flexibility.
Abstract:Dynamic scene reconstruction has garnered significant attention in recent years due to its capabilities in high-quality and real-time rendering. Among various methodologies, constructing a 4D spatial-temporal representation, such as 4D-GS, has gained popularity for its high-quality rendered images. However, these methods often produce suboptimal surfaces, as the discrete 3D Gaussian point clouds fail to align with the object's surface precisely. To address this problem, we propose DynaSurfGS to achieve both photorealistic rendering and high-fidelity surface reconstruction of dynamic scenarios. Specifically, the DynaSurfGS framework first incorporates Gaussian features from 4D neural voxels with the planar-based Gaussian Splatting to facilitate precise surface reconstruction. It leverages normal regularization to enforce the smoothness of the surface of dynamic objects. It also incorporates the as-rigid-as-possible (ARAP) constraint to maintain the approximate rigidity of local neighborhoods of 3D Gaussians between timesteps and ensure that adjacent 3D Gaussians remain closely aligned throughout. Extensive experiments demonstrate that DynaSurfGS surpasses state-of-the-art methods in both high-fidelity surface reconstruction and photorealistic rendering.
Abstract:Background: Fairness testing for deep learning systems has been becoming increasingly important. However, much work assumes perfect context and conditions from the other parts: well-tuned hyperparameters for accuracy; rectified bias in data, and mitigated bias in the labeling. Yet, these are often difficult to achieve in practice due to their resource-/labour-intensive nature. Aims: In this paper, we aim to understand how varying contexts affect fairness testing outcomes. Method:We conduct an extensive empirical study, which covers $10,800$ cases, to investigate how contexts can change the fairness testing result at the model level against the existing assumptions. We also study why the outcomes were observed from the lens of correlation/fitness landscape analysis. Results: Our results show that different context types and settings generally lead to a significant impact on the testing, which is mainly caused by the shifts of the fitness landscape under varying contexts. Conclusions: Our findings provide key insights for practitioners to evaluate the test generators and hint at future research directions.
Abstract:The recent development of online static map element (a.k.a. HD map) construction algorithms has raised a vast demand for data with ground truth annotations. However, available public datasets currently cannot provide high-quality training data regarding consistency and accuracy. For instance, the manual labelled (low efficiency) nuScenes still contains misalignment and inconsistency between the HD maps and images (e.g., around 8.03 pixels reprojection error on average). To this end, we present CAMAv2: a vision-centric approach for Consistent and Accurate Map Annotation. Without LiDAR inputs, our proposed framework can still generate high-quality 3D annotations of static map elements. Specifically, the annotation can achieve high reprojection accuracy across all surrounding cameras and is spatial-temporal consistent across the whole sequence. We apply our proposed framework to the popular nuScenes dataset to provide efficient and highly accurate annotations. Compared with the original nuScenes static map element, our CAMAv2 annotations achieve lower reprojection errors (e.g., 4.96 vs. 8.03 pixels). Models trained with annotations from CAMAv2 also achieve lower reprojection errors (e.g., 5.62 vs. 8.43 pixels).