Abstract:Diffusion models are widely recognized for generating high-quality and diverse images, but their poor real-time performance has led to numerous acceleration works, primarily focusing on UNet-based structures. With the more successful results achieved by diffusion transformers (DiT), there is still a lack of exploration regarding the impact of DiT structure on generation, as well as the absence of an acceleration framework tailored to the DiT architecture. To tackle these challenges, we conduct an investigation into the correlation between DiT blocks and image generation. Our findings reveal that the front blocks of DiT are associated with the outline of the generated images, while the rear blocks are linked to the details. Based on this insight, we propose an overall training-free inference acceleration framework $\Delta$-DiT: using a designed cache mechanism to accelerate the rear DiT blocks in the early sampling stages and the front DiT blocks in the later stages. Specifically, a DiT-specific cache mechanism called $\Delta$-Cache is proposed, which considers the inputs of the previous sampling image and reduces the bias in the inference. Extensive experiments on PIXART-$\alpha$ and DiT-XL demonstrate that the $\Delta$-DiT can achieve a $1.6\times$ speedup on the 20-step generation and even improves performance in most cases. In the scenario of 4-step consistent model generation and the more challenging $1.12\times$ acceleration, our method significantly outperforms existing methods. Our code will be publicly available.
Abstract:Recently, foundational models such as CLIP and SAM have shown promising performance for the task of Zero-Shot Anomaly Segmentation (ZSAS). However, either CLIP-based or SAM-based ZSAS methods still suffer from non-negligible key drawbacks: 1) CLIP primarily focuses on global feature alignment across different inputs, leading to imprecise segmentation of local anomalous parts; 2) SAM tends to generate numerous redundant masks without proper prompt constraints, resulting in complex post-processing requirements. In this work, we innovatively propose a CLIP and SAM collaboration framework called ClipSAM for ZSAS. The insight behind ClipSAM is to employ CLIP's semantic understanding capability for anomaly localization and rough segmentation, which is further used as the prompt constraints for SAM to refine the anomaly segmentation results. In details, we introduce a crucial Unified Multi-scale Cross-modal Interaction (UMCI) module for interacting language with visual features at multiple scales of CLIP to reason anomaly positions. Then, we design a novel Multi-level Mask Refinement (MMR) module, which utilizes the positional information as multi-level prompts for SAM to acquire hierarchical levels of masks and merges them. Extensive experiments validate the effectiveness of our approach, achieving the optimal segmentation performance on the MVTec-AD and VisA datasets.
Abstract:Fine-tuning pre-trained foundation models has gained significant popularity in various research fields. Existing methods for fine-tuning can be roughly divided into two categories, namely Parameter-Efficient Fine-Tuning and High-Performance Fine-Tuning. The former aims at improving efficiency, while the latter focuses on enhancing performance. Beyond these methods, we demonstrate that Partial Fine-Tuning can be an innovative and promising direction capable of concurrently enhancing both efficiency and accuracy. We first validate eight manually-defined partial fine-tuning strategies across kinds of datasets and vision transformer architectures, and find that some partial fine-tuning strategies (e.g., ffn only or attention only) can achieve better performance with fewer tuned parameters than full fine-tuning, and selecting appropriate layers is critical to partial fine-tuning. Thus, we propose a novel fine-tuned angle metric to guide the selection of appropriate layers for partial fine-tuning, making it flexible to be adapted to various scenarios for more practicable partial fine-tuning. Additionally, we show that partial fine-tuning can serve as a new dimension for Model Soups, improving both the model performance and generalization with fewer tuned parameters. Comprehensive experiments on a wide range of datasets and models validate the great potential of partial fine-tuning.
Abstract:Improving the efficiency of Neural Architecture Search (NAS) is a challenging but significant task that has received much attention. Previous works mainly adopted the Differentiable Architecture Search (DARTS) and improved its search strategies or modules to enhance search efficiency. Recently, some methods have started considering data reduction for speedup, but they are not tightly coupled with the architecture search process, resulting in sub-optimal performance. To this end, this work pioneers an exploration into the critical role of dataset characteristics for DARTS bi-level optimization, and then proposes a novel Bi-level Data Pruning (BDP) paradigm that targets the weights and architecture levels of DARTS to enhance efficiency from a data perspective. Specifically, we introduce a new progressive data pruning strategy that utilizes supernet prediction dynamics as the metric, to gradually prune unsuitable samples for DARTS during the search. An effective automatic class balance constraint is also integrated into BDP, to suppress potential class imbalances resulting from data-efficient algorithms. Comprehensive evaluations on the NAS-Bench-201 search space, DARTS search space, and MobileNet-like search space validate that BDP reduces search costs by over 50% while achieving superior performance when applied to baseline DARTS. Besides, we demonstrate that BDP can harmoniously integrate with advanced DARTS variants, like PC-DARTS and \b{eta}-DARTS, offering an approximately 2 times speedup with minimal performance compromises.