Abstract:Employing LLMs for visual generation has recently become a research focus. However, the existing methods primarily transfer the LLM architecture to visual generation but rarely investigate the fundamental differences between language and vision. This oversight may lead to suboptimal utilization of visual generation capabilities within the LLM framework. In this paper, we explore the characteristics of visual embedding space under the LLM framework and discover that the correlation between visual embeddings can help achieve more stable and robust generation results. We present IAR, an Improved AutoRegressive Visual Generation Method that enhances the training efficiency and generation quality of LLM-based visual generation models. Firstly, we propose a Codebook Rearrangement strategy that uses balanced k-means clustering algorithm to rearrange the visual codebook into clusters, ensuring high similarity among visual features within each cluster. Leveraging the rearranged codebook, we propose a Cluster-oriented Cross-entropy Loss that guides the model to correctly predict the cluster where the token is located. This approach ensures that even if the model predicts the wrong token index, there is a high probability the predicted token is located in the correct cluster, which significantly enhances the generation quality and robustness. Extensive experiments demonstrate that our method consistently enhances the model training efficiency and performance from 100M to 1.4B, reducing the training time by half while achieving the same FID. Additionally, our approach can be applied to various LLM-based visual generation models and adheres to the scaling law, providing a promising direction for future research in LLM-based visual generation.
Abstract:We propose MikuDance, a diffusion-based pipeline incorporating mixed motion dynamics to animate stylized character art. MikuDance consists of two key techniques: Mixed Motion Modeling and Mixed-Control Diffusion, to address the challenges of high-dynamic motion and reference-guidance misalignment in character art animation. Specifically, a Scene Motion Tracking strategy is presented to explicitly model the dynamic camera in pixel-wise space, enabling unified character-scene motion modeling. Building on this, the Mixed-Control Diffusion implicitly aligns the scale and body shape of diverse characters with motion guidance, allowing flexible control of local character motion. Subsequently, a Motion-Adaptive Normalization module is incorporated to effectively inject global scene motion, paving the way for comprehensive character art animation. Through extensive experiments, we demonstrate the effectiveness and generalizability of MikuDance across various character art and motion guidance, consistently producing high-quality animations with remarkable motion dynamics.
Abstract:Texturing is a crucial step in the 3D asset production workflow, which enhances the visual appeal and diversity of 3D assets. Despite recent advancements in Text-to-Texture (T2T) generation, existing methods often yield subpar results, primarily due to local discontinuities, inconsistencies across multiple views, and their heavy dependence on UV unwrapping outcomes. To tackle these challenges, we propose a novel generation-refinement 3D texturing framework called MVPaint, which can generate high-resolution, seamless textures while emphasizing multi-view consistency. MVPaint mainly consists of three key modules. 1) Synchronized Multi-view Generation (SMG). Given a 3D mesh model, MVPaint first simultaneously generates multi-view images by employing an SMG model, which leads to coarse texturing results with unpainted parts due to missing observations. 2) Spatial-aware 3D Inpainting (S3I). To ensure complete 3D texturing, we introduce the S3I method, specifically designed to effectively texture previously unobserved areas. 3) UV Refinement (UVR). Furthermore, MVPaint employs a UVR module to improve the texture quality in the UV space, which first performs a UV-space Super-Resolution, followed by a Spatial-aware Seam-Smoothing algorithm for revising spatial texturing discontinuities caused by UV unwrapping. Moreover, we establish two T2T evaluation benchmarks: the Objaverse T2T benchmark and the GSO T2T benchmark, based on selected high-quality 3D meshes from the Objaverse dataset and the entire GSO dataset, respectively. Extensive experimental results demonstrate that MVPaint surpasses existing state-of-the-art methods. Notably, MVPaint could generate high-fidelity textures with minimal Janus issues and highly enhanced cross-view consistency.
Abstract:The polygon mesh representation of 3D data exhibits great flexibility, fast rendering speed, and storage efficiency, which is widely preferred in various applications. However, given its unstructured graph representation, the direct generation of high-fidelity 3D meshes is challenging. Fortunately, with a pre-defined ordering strategy, 3D meshes can be represented as sequences, and the generation process can be seamlessly treated as an auto-regressive problem. In this paper, we validate the Neural Coordinate Field (NeurCF), an explicit coordinate representation with implicit neural embeddings, is a simple-yet-effective representation for large-scale sequential mesh modeling. After that, we present MeshXL, a family of generative pre-trained auto-regressive models, which addresses the process of 3D mesh generation with modern large language model approaches. Extensive experiments show that MeshXL is able to generate high-quality 3D meshes, and can also serve as foundation models for various down-stream applications.
Abstract:This paper presents Paint3D, a novel coarse-to-fine generative framework that is capable of producing high-resolution, lighting-less, and diverse 2K UV texture maps for untextured 3D meshes conditioned on text or image inputs. The key challenge addressed is generating high-quality textures without embedded illumination information, which allows the textures to be re-lighted or re-edited within modern graphics pipelines. To achieve this, our method first leverages a pre-trained depth-aware 2D diffusion model to generate view-conditional images and perform multi-view texture fusion, producing an initial coarse texture map. However, as 2D models cannot fully represent 3D shapes and disable lighting effects, the coarse texture map exhibits incomplete areas and illumination artifacts. To resolve this, we train separate UV Inpainting and UVHD diffusion models specialized for the shape-aware refinement of incomplete areas and the removal of illumination artifacts. Through this coarse-to-fine process, Paint3D can produce high-quality 2K UV textures that maintain semantic consistency while being lighting-less, significantly advancing the state-of-the-art in texturing 3D objects.
Abstract:We present a novel alignment-before-generation approach to tackle the challenging task of generating general 3D shapes based on 2D images or texts. Directly learning a conditional generative model from images or texts to 3D shapes is prone to producing inconsistent results with the conditions because 3D shapes have an additional dimension whose distribution significantly differs from that of 2D images and texts. To bridge the domain gap among the three modalities and facilitate multi-modal-conditioned 3D shape generation, we explore representing 3D shapes in a shape-image-text-aligned space. Our framework comprises two models: a Shape-Image-Text-Aligned Variational Auto-Encoder (SITA-VAE) and a conditional Aligned Shape Latent Diffusion Model (ASLDM). The former model encodes the 3D shapes into the shape latent space aligned to the image and text and reconstructs the fine-grained 3D neural fields corresponding to given shape embeddings via the transformer-based decoder. The latter model learns a probabilistic mapping function from the image or text space to the latent shape space. Our extensive experiments demonstrate that our proposed approach can generate higher-quality and more diverse 3D shapes that better semantically conform to the visual or textural conditional inputs, validating the effectiveness of the shape-image-text-aligned space for cross-modality 3D shape generation.
Abstract:In spite of the success on benchmark datasets, most advanced face super-resolution models perform poorly in real scenarios since the remarkable domain gap between the real images and the synthesized training pairs. To tackle this problem, we propose a novel domain-adaptive degradation network for face super-resolution in the wild. This degradation network predicts a flow field along with an intermediate low resolution image. Then, the degraded counterpart is generated by warping the intermediate image. With the preference of capturing motion blur, such a model performs better at preserving identity consistency between the original images and the degraded. We further present the self-conditioned block for super-resolution network. This block takes the input image as a condition term to effectively utilize facial structure information, eliminating the reliance on explicit priors, e.g. facial landmarks or boundary. Our model achieves state-of-the-art performance on both CelebA and real-world face dataset. The former demonstrates the powerful generative ability of our proposed architecture while the latter shows great identity consistency and perceptual quality in real-world images.
Abstract:Audio-guided face reenactment aims to generate a photorealistic face that has matched facial expression with the input audio. However, current methods can only reenact a special person once the model is trained or need extra operations such as 3D rendering and image post-fusion on the premise of generating vivid faces. To solve the above challenge, we propose a novel \emph{R}eal-time \emph{A}udio-guided \emph{M}ulti-face reenactment approach named \emph{APB2FaceV2}, which can reenact different target faces among multiple persons with corresponding reference face and drive audio signal as inputs. Enabling the model to be trained end-to-end and have a faster speed, we design a novel module named Adaptive Convolution (AdaConv) to infuse audio information into the network, as well as adopt a lightweight network as our backbone so that the network can run in real time on CPU and GPU. Comparison experiments prove the superiority of our approach than existing state-of-the-art methods, and further experiments demonstrate that our method is efficient and flexible for practical applications https://github.com/zhangzjn/APB2FaceV2
Abstract:Due to the difficulty in generating the effective descriptors which are robust to occlusion and viewpoint changes, place recognition for 3D point cloud remains an open issue. Unlike most of the existing methods that focus on extracting local, global, and statistical features of raw point clouds, our method aims at the semantic level that can be superior in terms of robustness to environmental changes. Inspired by the perspective of humans, who recognize scenes through identifying semantic objects and capturing their relations, this paper presents a novel semantic graph based approach for place recognition. First, we propose a novel semantic graph representation for the point cloud scenes by reserving the semantic and topological information of the raw point cloud. Thus, place recognition is modeled as a graph matching problem. Then we design a fast and effective graph similarity network to compute the similarity. Exhaustive evaluations on the KITTI dataset show that our approach is robust to the occlusion as well as viewpoint changes and outperforms the state-of-the-art methods with a large margin. Our code is available at: \url{https://github.com/kxhit/SG_PR}.
Abstract:The quantized neural network (QNN) is an efficient approach for network compression and can be widely used in the implementation of FPGAs. This paper proposes a novel learning framework for n-bit QNNs, whose weights are constrained to the power of two. To solve the gradient vanishing problem, we propose a reconstructed gradient function for QNNs in back-propagation algorithm that can directly get the real gradient rather than estimating an approximate gradient of the expected loss. We also propose a novel QNN structure named n-BQ-NN, which uses shift operation to replace the multiply operation and is more suitable for the inference on FPGAs. Furthermore, we also design a shift vector processing element (SVPE) array to replace all 16-bit multiplications with SHIFT operations in convolution operation on FPGAs. We also carry out comparable experiments to evaluate our framework. The experimental results show that the quantized models of ResNet, DenseNet and AlexNet through our learning framework can achieve almost the same accuracies with the original full-precision models. Moreover, when using our learning framework to train our n-BQ-NN from scratch, it can achieve state-of-the-art results compared with typical low-precision QNNs. Experiments on Xilinx ZCU102 platform show that our n-BQ-NN with our SVPE can execute 2.9 times faster than with the vector processing element (VPE) in inference. As the SHIFT operation in our SVPE array will not consume Digital Signal Processings (DSPs) resources on FPGAs, the experiments have shown that the use of SVPE array also reduces average energy consumption to 68.7% of the VPE array with 16-bit.