Abstract:A good co-speech motion generation cannot be achieved without a careful integration of common rhythmic motion and rare yet essential semantic motion. In this work, we propose SemTalk for holistic co-speech motion generation with frame-level semantic emphasis. Our key insight is to separately learn general motions and sparse motions, and then adaptively fuse them. In particular, rhythmic consistency learning is explored to establish rhythm-related base motion, ensuring a coherent foundation that synchronizes gestures with the speech rhythm. Subsequently, textit{semantic emphasis learning is designed to generate semantic-aware sparse motion, focusing on frame-level semantic cues. Finally, to integrate sparse motion into the base motion and generate semantic-emphasized co-speech gestures, we further leverage a learned semantic score for adaptive synthesis. Qualitative and quantitative comparisons on two public datasets demonstrate that our method outperforms the state-of-the-art, delivering high-quality co-speech motion with enhanced semantic richness over a stable base motion.
Abstract:We propose MikuDance, a diffusion-based pipeline incorporating mixed motion dynamics to animate stylized character art. MikuDance consists of two key techniques: Mixed Motion Modeling and Mixed-Control Diffusion, to address the challenges of high-dynamic motion and reference-guidance misalignment in character art animation. Specifically, a Scene Motion Tracking strategy is presented to explicitly model the dynamic camera in pixel-wise space, enabling unified character-scene motion modeling. Building on this, the Mixed-Control Diffusion implicitly aligns the scale and body shape of diverse characters with motion guidance, allowing flexible control of local character motion. Subsequently, a Motion-Adaptive Normalization module is incorporated to effectively inject global scene motion, paving the way for comprehensive character art animation. Through extensive experiments, we demonstrate the effectiveness and generalizability of MikuDance across various character art and motion guidance, consistently producing high-quality animations with remarkable motion dynamics.
Abstract:Falling objects from buildings can cause severe injuries to pedestrians due to the great impact force they exert. Although surveillance cameras are installed around some buildings, it is challenging for humans to capture such events in surveillance videos due to the small size and fast motion of falling objects, as well as the complex background. Therefore, it is necessary to develop methods to automatically detect falling objects around buildings in surveillance videos. To facilitate the investigation of falling object detection, we propose a large, diverse video dataset called FADE (FAlling Object DEtection around Buildings) for the first time. FADE contains 1,881 videos from 18 scenes, featuring 8 falling object categories, 4 weather conditions, and 4 video resolutions. Additionally, we develop a new object detection method called FADE-Net, which effectively leverages motion information and produces small-sized but high-quality proposals for detecting falling objects around buildings. Importantly, our method is extensively evaluated and analyzed by comparing it with the previous approaches used for generic object detection, video object detection, and moving object detection on the FADE dataset. Experimental results show that the proposed FADE-Net significantly outperforms other methods, providing an effective baseline for future research. The dataset and code are publicly available at https://fadedataset.github.io/FADE.github.io/.
Abstract:Knowledge distillation (KD) enhances the performance of a student network by allowing it to learn the knowledge transferred from a teacher network incrementally. Existing methods dynamically adjust the temperature to enable the student network to adapt to the varying learning difficulties at different learning stages of KD. KD is a continuous process, but when adjusting the temperature, these methods consider only the immediate benefits of the operation in the current learning phase and fail to take into account its future returns. To address this issue, we formulate the adjustment of temperature as a sequential decision-making task and propose a method based on reinforcement learning, termed RLKD. Importantly, we design a novel state representation to enable the agent to make more informed action (i.e. instance temperature adjustment). To handle the problem of delayed rewards in our method due to the KD setting, we explore an instance reward calibration approach. In addition,we devise an efficient exploration strategy that enables the agent to learn valuable instance temperature adjustment policy more efficiently. Our framework can serve as a plug-and-play technique to be inserted into various KD methods easily, and we validate its effectiveness on both image classification and object detection tasks. Our code is at https://github.com/Zhengbo-Zhang/ITKD
Abstract:In the realm of skeleton-based action recognition, the traditional methods which rely on coarse body keypoints fall short of capturing subtle human actions. In this work, we propose Expressive Keypoints that incorporates hand and foot details to form a fine-grained skeletal representation, improving the discriminative ability for existing models in discerning intricate actions. To efficiently model Expressive Keypoints, the Skeleton Transformation strategy is presented to gradually downsample the keypoints and prioritize prominent joints by allocating the importance weights. Additionally, a plug-and-play Instance Pooling module is exploited to extend our approach to multi-person scenarios without surging computation costs. Extensive experimental results over seven datasets present the superiority of our method compared to the state-of-the-art for skeleton-based human action recognition. Code is available at https://github.com/YijieYang23/SkeleT-GCN.
Abstract:Stylized motion breathes life into characters. However, the fixed skeleton structure and style representation hinder existing data-driven motion synthesis methods from generating stylized motion for various characters. In this work, we propose a generative motion stylization pipeline, named MotionS, for synthesizing diverse and stylized motion on cross-structure characters using cross-modality style prompts. Our key insight is to embed motion style into a cross-modality latent space and perceive the cross-structure skeleton topologies, allowing for motion stylization within a canonical motion space. Specifically, the large-scale Contrastive-Language-Image-Pre-training (CLIP) model is leveraged to construct the cross-modality latent space, enabling flexible style representation within this space. Additionally, two topology-encoded tokens are learned to capture the canonical and specific skeleton topologies, facilitating cross-structure topology shifting. Subsequently, the topology-shifted stylization diffusion is designed to generate motion content for the specific skeleton and stylize it in the shifted canonical motion space using multi-modality style descriptions. Through an extensive set of examples, we demonstrate the flexibility and generalizability of our pipeline across various characters and style descriptions. Qualitative and quantitative experiments underscore the superiority of our pipeline over state-of-the-art methods, consistently delivering high-quality stylized motion across a broad spectrum of skeletal structures.
Abstract:Previous motion generation methods are limited to the pre-rigged 3D human model, hindering their applications in the animation of various non-rigged characters. In this work, we present TapMo, a Text-driven Animation Pipeline for synthesizing Motion in a broad spectrum of skeleton-free 3D characters. The pivotal innovation in TapMo is its use of shape deformation-aware features as a condition to guide the diffusion model, thereby enabling the generation of mesh-specific motions for various characters. Specifically, TapMo comprises two main components - Mesh Handle Predictor and Shape-aware Diffusion Module. Mesh Handle Predictor predicts the skinning weights and clusters mesh vertices into adaptive handles for deformation control, which eliminates the need for traditional skeletal rigging. Shape-aware Motion Diffusion synthesizes motion with mesh-specific adaptations. This module employs text-guided motions and mesh features extracted during the first stage, preserving the geometric integrity of the animations by accounting for the character's shape and deformation. Trained in a weakly-supervised manner, TapMo can accommodate a multitude of non-human meshes, both with and without associated text motions. We demonstrate the effectiveness and generalizability of TapMo through rigorous qualitative and quantitative experiments. Our results reveal that TapMo consistently outperforms existing auto-animation methods, delivering superior-quality animations for both seen or unseen heterogeneous 3D characters.
Abstract:We propose PHRIT, a novel approach for parametric hand mesh modeling with an implicit template that combines the advantages of both parametric meshes and implicit representations. Our method represents deformable hand shapes using signed distance fields (SDFs) with part-based shape priors, utilizing a deformation field to execute the deformation. The model offers efficient high-fidelity hand reconstruction by deforming the canonical template at infinite resolution. Additionally, it is fully differentiable and can be easily used in hand modeling since it can be driven by the skeleton and shape latent codes. We evaluate PHRIT on multiple downstream tasks, including skeleton-driven hand reconstruction, shapes from point clouds, and single-view 3D reconstruction, demonstrating that our approach achieves realistic and immersive hand modeling with state-of-the-art performance.
Abstract:A good motion retargeting cannot be reached without reasonable consideration of source-target differences on both the skeleton and shape geometry levels. In this work, we propose a novel Residual RETargeting network (R2ET) structure, which relies on two neural modification modules, to adjust the source motions to fit the target skeletons and shapes progressively. In particular, a skeleton-aware module is introduced to preserve the source motion semantics. A shape-aware module is designed to perceive the geometries of target characters to reduce interpenetration and contact-missing. Driven by our explored distance-based losses that explicitly model the motion semantics and geometry, these two modules can learn residual motion modifications on the source motion to generate plausible retargeted motion in a single inference without post-processing. To balance these two modifications, we further present a balancing gate to conduct linear interpolation between them. Extensive experiments on the public dataset Mixamo demonstrate that our R2ET achieves the state-of-the-art performance, and provides a good balance between the preservation of motion semantics as well as the attenuation of interpenetration and contact-missing. Code is available at https://github.com/Kebii/R2ET.
Abstract:Knowledge distillation is widely adopted in semantic segmentation to reduce the computation cost.The previous knowledge distillation methods for semantic segmentation focus on pixel-wise feature alignment and intra-class feature variation distillation, neglecting to transfer the knowledge of the inter-class distance in the feature space, which is important for semantic segmentation. To address this issue, we propose an Inter-class Distance Distillation (IDD) method to transfer the inter-class distance in the feature space from the teacher network to the student network. Furthermore, semantic segmentation is a position-dependent task,thus we exploit a position information distillation module to help the student network encode more position information. Extensive experiments on three popular datasets: Cityscapes, Pascal VOC and ADE20K show that our method is helpful to improve the accuracy of semantic segmentation models and achieves the state-of-the-art performance. E.g. it boosts the benchmark model("PSPNet+ResNet18") by 7.50% in accuracy on the Cityscapes dataset.