Abstract:Language based editing of 3D human avatars to precisely match user requirements is challenging due to the inherent ambiguity and limited expressiveness of natural language. To overcome this, we propose the Avatar Concept Slider (ACS), a 3D avatar editing method that allows precise manipulation of semantic concepts in human avatars towards a specified intermediate point between two extremes of concepts, akin to moving a knob along a slider track. To achieve this, our ACS has three designs. 1) A Concept Sliding Loss based on Linear Discriminant Analysis to pinpoint the concept-specific axis for precise editing. 2) An Attribute Preserving Loss based on Principal Component Analysis for improved preservation of avatar identity during editing. 3) A 3D Gaussian Splatting primitive selection mechanism based on concept-sensitivity, which updates only the primitives that are the most sensitive to our target concept, to improve efficiency. Results demonstrate that our ACS enables fine-grained 3D avatar editing with efficient feedback, without harming the avatar quality or compromising the avatar's identifying attributes.
Abstract:Machine unlearning (MU) seeks to remove knowledge of specific data samples from trained models without the necessity for complete retraining, a task made challenging by the dual objectives of effective erasure of data and maintaining the overall performance of the model. Despite recent advances in this field, balancing between the dual objectives of unlearning remains challenging. From a fresh perspective of generalization, we introduce a novel Learning-to-Unlearn (LTU) framework, which adopts a meta-learning approach to optimize the unlearning process to improve forgetting and remembering in a unified manner. LTU includes a meta-optimization scheme that facilitates models to effectively preserve generalizable knowledge with only a small subset of the remaining set, while thoroughly forgetting the specific data samples. We also introduce a Gradient Harmonization strategy to align the optimization trajectories for remembering and forgetting via mitigating gradient conflicts, thus ensuring efficient and effective model updates. Our approach demonstrates improved efficiency and efficacy for MU, offering a promising solution to the challenges of data rights and model reusability.
Abstract:Creating and customizing a 3D clothed avatar from textual descriptions is a critical and challenging task. Traditional methods often treat the human body and clothing as inseparable, limiting users' ability to freely mix and match garments. In response to this limitation, we present LAyered Gaussian Avatar (LAGA), a carefully designed framework enabling the creation of high-fidelity decomposable avatars with diverse garments. By decoupling garments from avatar, our framework empowers users to conviniently edit avatars at the garment level. Our approach begins by modeling the avatar using a set of Gaussian points organized in a layered structure, where each layer corresponds to a specific garment or the human body itself. To generate high-quality garments for each layer, we introduce a coarse-to-fine strategy for diverse garment generation and a novel dual-SDS loss function to maintain coherence between the generated garments and avatar components, including the human body and other garments. Moreover, we introduce three regularization losses to guide the movement of Gaussians for garment transfer, allowing garments to be freely transferred to various avatars. Extensive experimentation demonstrates that our approach surpasses existing methods in the generation of 3D clothed humans.
Abstract:Sign Language Translation (SLT) is a challenging task that aims to translate sign videos into spoken language. Inspired by the strong translation capabilities of large language models (LLMs) that are trained on extensive multilingual text corpora, we aim to harness off-the-shelf LLMs to handle SLT. In this paper, we regularize the sign videos to embody linguistic characteristics of spoken language, and propose a novel SignLLM framework to transform sign videos into a language-like representation for improved readability by off-the-shelf LLMs. SignLLM comprises two key modules: (1) The Vector-Quantized Visual Sign module converts sign videos into a sequence of discrete character-level sign tokens, and (2) the Codebook Reconstruction and Alignment module converts these character-level tokens into word-level sign representations using an optimal transport formulation. A sign-text alignment loss further bridges the gap between sign and text tokens, enhancing semantic compatibility. We achieve state-of-the-art gloss-free results on two widely-used SLT benchmarks.
Abstract:Action detection aims to localize the starting and ending points of action instances in untrimmed videos, and predict the classes of those instances. In this paper, we make the observation that the outputs of the action detection task can be formulated as images. Thus, from a novel perspective, we tackle action detection via a three-image generation process to generate starting point, ending point and action-class predictions as images via our proposed Action Detection Image Diffusion (ADI-Diff) framework. Furthermore, since our images differ from natural images and exhibit special properties, we further explore a Discrete Action-Detection Diffusion Process and a Row-Column Transformer design to better handle their processing. Our ADI-Diff framework achieves state-of-the-art results on two widely-used datasets.
Abstract:Recovering a 3D human mesh from a single RGB image is a challenging task due to depth ambiguity and self-occlusion, resulting in a high degree of uncertainty. Meanwhile, diffusion models have recently seen much success in generating high-quality outputs by progressively denoising noisy inputs. Inspired by their capability, we explore a diffusion-based approach for human mesh recovery, and propose a Human Mesh Diffusion (HMDiff) framework which frames mesh recovery as a reverse diffusion process. We also propose a Distribution Alignment Technique (DAT) that infuses prior distribution information into the mesh distribution diffusion process, and provides useful prior knowledge to facilitate the mesh recovery task. Our method achieves state-of-the-art performance on three widely used datasets. Project page: https://gongjia0208.github.io/HMDiff/.
Abstract:AI-generated content (AIGC) methods aim to produce text, images, videos, 3D assets, and other media using AI algorithms. Due to its wide range of applications and the demonstrated potential of recent works, AIGC developments have been attracting lots of attention recently, and AIGC methods have been developed for various data modalities, such as image, video, text, 3D shape (as voxels, point clouds, meshes, and neural implicit fields), 3D scene, 3D human avatar (body and head), 3D motion, and audio -- each presenting different characteristics and challenges. Furthermore, there have also been many significant developments in cross-modality AIGC methods, where generative methods can receive conditioning input in one modality and produce outputs in another. Examples include going from various modalities to image, video, 3D shape, 3D scene, 3D avatar (body and head), 3D motion (skeleton and avatar), and audio modalities. In this paper, we provide a comprehensive review of AIGC methods across different data modalities, including both single-modality and cross-modality methods, highlighting the various challenges, representative works, and recent technical directions in each setting. We also survey the representative datasets throughout the modalities, and present comparative results for various modalities. Moreover, we also discuss the challenges and potential future research directions.
Abstract:Learning with large-scale unlabeled data has become a powerful tool for pre-training Visual Transformers (VTs). However, prior works tend to overlook that, in real-world scenarios, the input data may be corrupted and unreliable. Pre-training VTs on such corrupted data can be challenging, especially when we pre-train via the masked autoencoding approach, where both the inputs and masked ``ground truth" targets can potentially be unreliable in this case. To address this limitation, we introduce the Token Boosting Module (TBM) as a plug-and-play component for VTs that effectively allows the VT to learn to extract clean and robust features during masked autoencoding pre-training. We provide theoretical analysis to show how TBM improves model pre-training with more robust and generalizable representations, thus benefiting downstream tasks. We conduct extensive experiments to analyze TBM's effectiveness, and results on four corrupted datasets demonstrate that TBM consistently improves performance on downstream tasks.
Abstract:Recent years have witnessed great progress in deep neural networks for real-time applications. However, most existing works do not explicitly consider the general case where the device's state and the available resources fluctuate over time, and none of them investigate or address the impact of varying computational resources for online video understanding tasks. This paper proposes a System-status-aware Adaptive Network (SAN) that considers the device's real-time state to provide high-quality predictions with low delay. Usage of our agent's policy improves efficiency and robustness to fluctuations of the system status. On two widely used video understanding tasks, SAN obtains state-of-the-art performance while constantly keeping processing delays low. Moreover, training such an agent on various types of hardware configurations is not easy as the labeled training data might not be available, or can be computationally prohibitive. To address this challenging problem, we propose a Meta Self-supervised Adaptation (MSA) method that adapts the agent's policy to new hardware configurations at test-time, allowing for easy deployment of the model onto other unseen hardware platforms.
Abstract:Dynamic neural networks can greatly reduce computation redundancy without compromising accuracy by adapting their structures based on the input. In this paper, we explore the robustness of dynamic neural networks against energy-oriented attacks targeted at reducing their efficiency. Specifically, we attack dynamic models with our novel algorithm GradMDM. GradMDM is a technique that adjusts the direction and the magnitude of the gradients to effectively find a small perturbation for each input, that will activate more computational units of dynamic models during inference. We evaluate GradMDM on multiple datasets and dynamic models, where it outperforms previous energy-oriented attack techniques, significantly increasing computation complexity while reducing the perceptibility of the perturbations.