Abstract:Large language models increasingly spend inference compute sampling multiple chain-of-thought traces or searching over merged checkpoints. This shifts the bottleneck from generation to selection, often without supervision on the target distribution. We show entropy-based exploration proxies follow an inverted-U with accuracy, suggesting extra exploration can become redundant and induce overthinking. We propose NEX, a white-box label-free unsupervised scoring framework that views reasoning as alternating E-phase (exploration) and X-phase (exploitation). NEX detects E-phase as spikes in newly activated MLP neurons per token from sparse activation caches, then uses a sticky two-state HMM to infer E-X phases and credits E-introduced neurons by whether they are reused in the following X span. These signals yield interpretable neuron weights and a single Good-Mass Fraction score to rank candidate responses and merged variants without task answers. Across reasoning benchmarks and Qwen3 merge families, NEX computed on a small unlabeled activation set predicts downstream accuracy and identifies better variants; we further validate the E-X signal with human annotations and provide causal evidence via "Effective-vs-Redundant" neuron transfer.
Abstract:Spiking Neural Networks (SNNs) can achieve competitive performance by converting already existing well-trained Artificial Neural Networks (ANNs), avoiding further costly training. This property is particularly attractive in Reinforcement Learning (RL), where training through environment interaction is expensive and potentially unsafe. However, existing conversion methods perform poorly in continuous control, where suitable baselines are largely absent. We identify error amplification as the key cause: small action approximation errors become temporally correlated across decision steps, inducing cumulative state distribution shift and severe performance degradation. To address this issue, we propose Cross-Step Residual Potential Initialization (CRPI), a lightweight training-free mechanism that carries over residual membrane potentials across decision steps to suppress temporally correlated errors. Experiments on continuous control benchmarks with both vector and visual observations demonstrate that CRPI can be integrated into existing conversion pipelines and substantially recovers lost performance. Our results highlight continuous control as a critical and challenging benchmark for ANN-to-SNN conversion, where small errors can be strongly amplified and impact performance.
Abstract:Online blind source separation is essential for both speech communication and human-machine interaction. Among existing approaches, overdetermined independent vector analysis (OverIVA) delivers strong performance by exploiting the statistical independence of source signals and the orthogonality between source and noise subspaces. However, when applied to large microphone arrays, the number of parameters grows rapidly, which can degrade online estimation accuracy. To overcome this challenge, we propose decomposing each long separation filter into a bilinear form of two shorter filters, thereby reducing the number of parameters. Because the two filters are closely coupled, we design an alternating iterative projection algorithm to update them in turn. Simulation results show that, with far fewer parameters, the proposed method achieves improved performance and robustness.
Abstract:Scaling test-time compute via Long Chain-of-Thought (Long-CoT) significantly enhances reasoning capabilities, yet extended generation does not guarantee correctness: after an early wrong commitment, models may keep elaborating a self-consistent but incorrect prefix. Through fine-grained trajectory analysis, we identify Thinking Traps, prefix-dominant deadlocks where later reflection, alternative attempts, or verification fails to revise the root error. On a curated subset of DAPO-MATH, 89\% of failures exhibit such traps. To solve this problem, we introduce TAAR (Trap-Aware Adaptive Restart), a test-time control framework that trains a diagnostic policy to predict two signals from partial trajectories: a trap index for where to truncate and an escape probability for whether and how strongly to intervene. At inference time, TAAR truncates the trajectory before the predicted trap segment and adaptively restarts decoding; for severely trapped cases, it applies stronger perturbations, including higher-temperature resampling and an optional structured reboot suffix. Experiments on challenging mathematical and scientific reasoning benchmarks (AIME24, AIME25, GPQA-Diamond, HMMT25, BRUMO25) show that TAAR improves reasoning performance without fine-tuning base model parameters.
Abstract:Interactive large language model agents have advanced rapidly, but most remain specialized to a single environment and fail to adapt robustly to other environments. Model merging offers a training-free alternative by integrating multiple experts into a single model. In this paper, we propose Agent-Role Merging (ARM), an activation-guided, role-conditioned neuron transplantation method for model merging in LLM agents. ARM improves existing merging methods from static natural language tasks to multi-turn agent scenarios, and over the generalization ability across various interactive environments. This is achieved with a well designed 3-step framework: 1) constructing merged backbones, 2) selection based on its role-conditioned activation analysis, and 3) neuron transplantation for fine-grained refinements. Without gradient-based optimization, ARM improves cross-benchmark generalization while enjoying efficiency. Across diverse domains, the model obtained via ARM merging outperforms prior model merging methods and domain-specific expert models, while demonstrating strong out-of-domain generalization.
Abstract:Large language models (LLMs) commonly boost reasoning via sample-evaluate-ensemble decoders, achieving label free gains without ground truth. However, prevailing strategies score candidates using only external outputs such as token probabilities, entropies, or self evaluations, and these signals can be poorly calibrated after post training. We instead analyze internal behavior based on neuron activations and uncover three findings: (1) external signals are low dimensional projections of richer internal dynamics; (2) correct responses activate substantially fewer unique neurons than incorrect ones throughout generation; and (3) activations from correct responses exhibit stronger cross sample agreement, whereas incorrect ones diverge. Motivated by these observations, we propose Neuron Agreement Decoding (NAD), an unsupervised best-of-N method that selects candidates using activation sparsity and cross sample neuron agreement, operating solely on internal signals and without requiring comparable textual outputs. NAD enables early correctness prediction within the first 32 generated tokens and supports aggressive early stopping. Across math and science benchmarks with verifiable answers, NAD matches majority voting; on open ended coding benchmarks where majority voting is inapplicable, NAD consistently outperforms Avg@64. By pruning unpromising trajectories early, NAD reduces token usage by 99% with minimal loss in generation quality, showing that internal signals provide reliable, scalable, and efficient guidance for label free ensemble decoding.




Abstract:Vision-Language-Action (VLA) models enable robots to understand and perform complex tasks from multimodal input. Although recent work explores using reinforcement learning (RL) to automate the laborious data collection process in scaling supervised fine-tuning (SFT), applying large-scale RL to flow-based VLAs (e.g., $\pi_0$, $\pi_{0.5}$) remains challenging due to intractable action log-likelihoods from iterative denoising. We address this challenge with $\pi_{\text{RL}}$, an open-source framework for training flow-based VLAs in parallel simulation. $\pi_{\text{RL}}$ implements two RL algorithms: (1) {Flow-Noise} models the denoising process as a discrete-time MDP with a learnable noise network for exact log-likelihood computation. (2) {Flow-SDE} integrates denoising with agent-environment interaction, formulating a two-layer MDP that employs ODE-to-SDE conversion for efficient RL exploration. We evaluate $\pi_{\text{RL}}$ on LIBERO and ManiSkill benchmarks. On LIBERO, $\pi_{\text{RL}}$ boosts few-shot SFT models $\pi_0$ and $\pi_{0.5}$ from 57.6% to 97.6% and from 77.1% to 98.3%, respectively. In ManiSkill, we train $\pi_{\text{RL}}$ in 320 parallel environments, improving $\pi_0$ from 41.6% to 85.7% and $\pi_{0.5}$ from 40.0% to 84.8% across 4352 pick-and-place tasks, demonstrating scalable multitask RL under heterogeneous simulation. Overall, $\pi_{\text{RL}}$ achieves significant performance gains and stronger generalization over SFT-models, validating the effectiveness of online RL for flow-based VLAs.




Abstract:Reinforcement learning (RL) has demonstrated immense potential in advancing artificial general intelligence, agentic intelligence, and embodied intelligence. However, the inherent heterogeneity and dynamicity of RL workflows often lead to low hardware utilization and slow training on existing systems. In this paper, we present RLinf, a high-performance RL training system based on our key observation that the major roadblock to efficient RL training lies in system flexibility. To maximize flexibility and efficiency, RLinf is built atop a novel RL system design paradigm called macro-to-micro flow transformation (M2Flow), which automatically breaks down high-level, easy-to-compose RL workflows at both the temporal and spatial dimensions, and recomposes them into optimized execution flows. Supported by RLinf worker's adaptive communication capability, we devise context switching and elastic pipelining to realize M2Flow transformation, and a profiling-guided scheduling policy to generate optimal execution plans. Extensive evaluations on both reasoning RL and embodied RL tasks demonstrate that RLinf consistently outperforms state-of-the-art systems, achieving 1.1x-2.13x speedup in end-to-end training throughput.
Abstract:Building large-scale foundation model for PET imaging is hindered by limited access to labeled data and insufficient computational resources. To overcome data scarcity and efficiency limitations, we propose ALL-PET, a low-resource, low-shot PET foundation model operating directly in the projection domain. ALL-PET leverages a latent diffusion model (LDM) with three key innovations. First, we design a Radon mask augmentation strategy (RMAS) that generates over 200,000 structurally diverse training samples by projecting randomized image-domain masks into sinogram space, significantly improving generalization with minimal data. This is extended by a dynamic multi-mask (DMM) mechanism that varies mask quantity and distribution, enhancing data diversity without added model complexity. Second, we implement positive/negative mask constraints to embed strict geometric consistency, reducing parameter burden while preserving generation quality. Third, we introduce transparent medical attention (TMA), a parameter-free, geometry-driven mechanism that enhances lesion-related regions in raw projection data. Lesion-focused attention maps are derived from coarse segmentation, covering both hypermetabolic and hypometabolic areas, and projected into sinogram space for physically consistent guidance. The system supports clinician-defined ROI adjustments, ensuring flexible, interpretable, and task-adaptive emphasis aligned with PET acquisition physics. Experimental results show ALL-PET achieves high-quality sinogram generation using only 500 samples, with performance comparable to models trained on larger datasets. ALL-PET generalizes across tasks including low-dose reconstruction, attenuation correction, delayed-frame prediction, and tracer separation, operating efficiently with memory use under 24GB.




Abstract:Recent research has been increasingly focusing on developing 3D world models that simulate complex real-world scenarios. World models have found broad applications across various domains, including embodied AI, autonomous driving, entertainment, etc. A more realistic simulation with accurate physics will effectively narrow the sim-to-real gap and allow us to gather rich information about the real world conveniently. While traditional manual modeling has enabled the creation of virtual 3D scenes, modern approaches have leveraged advanced machine learning algorithms for 3D world generation, with most recent advances focusing on generative methods that can create virtual worlds based on user instructions. This work explores such a research direction by proposing LatticeWorld, a simple yet effective 3D world generation framework that streamlines the industrial production pipeline of 3D environments. LatticeWorld leverages lightweight LLMs (LLaMA-2-7B) alongside the industry-grade rendering engine (e.g., Unreal Engine 5) to generate a dynamic environment. Our proposed framework accepts textual descriptions and visual instructions as multimodal inputs and creates large-scale 3D interactive worlds with dynamic agents, featuring competitive multi-agent interaction, high-fidelity physics simulation, and real-time rendering. We conduct comprehensive experiments to evaluate LatticeWorld, showing that it achieves superior accuracy in scene layout generation and visual fidelity. Moreover, LatticeWorld achieves over a $90\times$ increase in industrial production efficiency while maintaining high creative quality compared with traditional manual production methods. Our demo video is available at https://youtu.be/8VWZXpERR18