Abstract:Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data. Existing methods attempt to alleviate task conflicts by sparsifying task vectors or promoting orthogonality among them. However, they overlook the fundamental requirement of model merging: ensuring the merged model performs comparably to task-specific models on respective tasks. We find these methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance. Based on our findings, we frame model merging as a constrained optimization problem ($\textit{i.e.}$, minimizing the gap between the merged model and individual models, subject to the constraint of retaining shared knowledge) and solve it via adaptive projective gradient descent. Specifically, we align the merged model with individual models by decomposing and reconstituting the loss function, alleviating conflicts through $\textit{data-free}$ optimization of task vectors. To retain shared knowledge, we optimize this objective by projecting gradients within a $\textit{shared subspace}$ spanning all tasks. Moreover, we view merging coefficients as adaptive learning rates and propose a task-aware, training-free strategy. Experiments show that our plug-and-play approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
Abstract:Autoregressive transformers have revolutionized high-fidelity image generation. One crucial ingredient lies in the tokenizer, which compresses high-resolution image patches into manageable discrete tokens with a scanning or hierarchical order suitable for large language models. Extending these tokenizers to 3D generation, however, presents a significant challenge: unlike image patches that naturally exhibit spatial sequence and multi-scale relationships, 3D data lacks an inherent order, making it difficult to compress into fewer tokens while preserving structural details. To address this, we introduce the Variational Tokenizer (VAT), which transforms unordered 3D data into compact latent tokens with an implicit hierarchy, suited for efficient and high-fidelity coarse-to-fine autoregressive modeling. VAT begins with an in-context transformer, which compress numerous unordered 3D features into a reduced token set with minimal information loss. This latent space is then mapped to a Gaussian distribution for residual quantization, with token counts progressively increasing across scales. In this way, tokens at different scales naturally establish the interconnections by allocating themselves into different subspaces within the same Gaussian distribution, facilitating discrete modeling of token relationships across scales. During the decoding phase, a high-resolution triplane is utilized to convert these compact latent tokens into detailed 3D shapes. Extensive experiments demonstrate that VAT enables scalable and efficient 3D generation, outperforming existing methods in quality, efficiency, and generalization. Remarkably, VAT achieves up to a 250x compression, reducing a 1MB mesh to just 3.9KB with a 96% F-score, and can further compress to 256 int8 tokens, achieving a 2000x reduction while maintaining a 92% F-score.
Abstract:With the rapid evolution of 3D generation algorithms, the cost of producing 3D humanoid character models has plummeted, yet the field is impeded by the lack of a comprehensive dataset for automatic rigging, which is a pivotal step in character animation. Addressing this gap, we present HumanRig, the first large-scale dataset specifically designed for 3D humanoid character rigging, encompassing 11,434 meticulously curated T-posed meshes adhered to a uniform skeleton topology. Capitalizing on this dataset, we introduce an innovative, data-driven automatic rigging framework, which overcomes the limitations of GNN-based methods in handling complex AI-generated meshes. Our approach integrates a Prior-Guided Skeleton Estimator (PGSE) module, which uses 2D skeleton joints to provide a preliminary 3D skeleton, and a Mesh-Skeleton Mutual Attention Network (MSMAN) that fuses skeleton features with 3D mesh features extracted by a U-shaped point transformer. This enables a coarse-to-fine 3D skeleton joint regression and a robust skinning estimation, surpassing previous methods in quality and versatility. This work not only remedies the dataset deficiency in rigging research but also propels the animation industry towards more efficient and automated character rigging pipelines.
Abstract:Model merging has gained increasing attention as an efficient and effective technique for integrating task-specific weights from various tasks into a unified multi-task model without retraining or additional data. As a representative approach, Task Arithmetic (TA) has demonstrated that combining task vectors through arithmetic operations facilitates efficient capability transfer between different tasks. In this framework, task vectors are obtained by subtracting the parameter values of a pre-trained model from those of individually fine-tuned models initialized from it. Despite the notable effectiveness of TA, interference among task vectors can adversely affect the performance of the merged model. In this paper, we relax the constraints of Task Arithmetic Property and propose Task Consistency Property, which can be regarded as being free from task interference. Through theoretical derivation, we show that such a property can be approximately achieved by seeking orthogonal task vectors. Guiding by this insight, we propose Adaptive Weight Disentanglement (AWD), which decomposes traditional task vectors into a redundant vector and several disentangled task vectors. The primary optimization objective of AWD is to achieve orthogonality among the disentangled task vectors, thereby closely approximating the desired solution. Notably, these disentangled task vectors can be seamlessly integrated into existing merging methodologies. Experimental results demonstrate that our AWD consistently and significantly improves upon previous merging approaches, achieving state-of-the-art results. Our code is available at \href{https://github.com/FarisXiong/AWD.git}{https://github.com/FarisXiong/AWD.git}.
Abstract:This paper explores the transformative role of artificial intelligence (AI) in enhancing scientific research, particularly in the fields of brain science and social sciences. We analyze the fundamental aspects of human research and argue that it is high time for researchers to transition to human-AI joint research. Building upon this foundation, we propose two innovative research paradigms of human-AI joint research: "AI-Brain Science Research Paradigm" and "AI-Social Sciences Research Paradigm". In these paradigms, we introduce three human-AI collaboration models: AI as a research tool (ART), AI as a research assistant (ARA), and AI as a research participant (ARP). Furthermore, we outline the methods for conducting human-AI joint research. This paper seeks to redefine the collaborative interactions between human researchers and AI system, setting the stage for future research directions and sparking innovation in this interdisciplinary field.
Abstract:Autoregressive transformers have revolutionized generative models in language processing and shown substantial promise in image and video generation. However, these models face significant challenges when extended to 3D generation tasks due to their reliance on next-token prediction to learn token sequences, which is incompatible with the unordered nature of 3D data. Instead of imposing an artificial order on 3D data, in this paper, we introduce G3PT, a scalable coarse-to-fine 3D generative model utilizing a cross-scale querying transformer. The key is to map point-based 3D data into discrete tokens with different levels of detail, naturally establishing a sequential relationship between different levels suitable for autoregressive modeling. Additionally, the cross-scale querying transformer connects tokens globally across different levels of detail without requiring an ordered sequence. Benefiting from this approach, G3PT features a versatile 3D generation pipeline that effortlessly supports diverse conditional structures, enabling the generation of 3D shapes from various types of conditions. Extensive experiments demonstrate that G3PT achieves superior generation quality and generalization ability compared to previous 3D generation methods. Most importantly, for the first time in 3D generation, scaling up G3PT reveals distinct power-law scaling behaviors.
Abstract:Solving Algebra Problems with Geometry Diagrams (APGDs) is still a challenging problem because diagram processing is not studied as intensively as language processing. To work against this challenge, this paper proposes a hologram reasoning scheme and develops a high-performance method for solving APGDs by using this scheme. To reach this goal, it first defines a hologram, being a kind of graph, and proposes a hologram generator to convert a given APGD into a hologram, which represents the entire information of APGD and the relations for solving the problem can be acquired from it by a uniform way. Then HGR, a hologram reasoning method employs a pool of prepared graph models to derive algebraic equations, which is consistent with the geometric theorems. This method is able to be updated by adding new graph models into the pool. Lastly, it employs deep reinforcement learning to enhance the efficiency of model selection from the pool. The entire HGR not only ensures high solution accuracy with fewer reasoning steps but also significantly enhances the interpretability of the solution process by providing descriptions of all reasoning steps. Experimental results demonstrate the effectiveness of HGR in improving both accuracy and interpretability in solving APGDs.
Abstract:We present a real-time LiDAR-Inertial-Camera SLAM system with 3D Gaussian Splatting as the mapping backend. Leveraging robust pose estimates from our LiDAR-Inertial-Camera odometry, Coco-LIC, an incremental photo-realistic mapping system is proposed in this paper. We initialize 3D Gaussians from colorized LiDAR points and optimize them using differentiable rendering powered by 3D Gaussian Splatting. Meticulously designed strategies are employed to incrementally expand the Gaussian map and adaptively control its density, ensuring high-quality mapping with real-time capability. Experiments conducted in diverse scenarios demonstrate the superior performance of our method compared to existing radiance-field-based SLAM systems.
Abstract:Neural radiance fields~(NeRF) have recently been applied to render large-scale scenes. However, their limited model capacity typically results in blurred rendering results. Existing large-scale NeRFs primarily address this limitation by partitioning the scene into blocks, which are subsequently handled by separate sub-NeRFs. These sub-NeRFs, trained from scratch and processed independently, lead to inconsistencies in geometry and appearance across the scene. Consequently, the rendering quality fails to exhibit significant improvement despite the expansion of model capacity. In this work, we present global-guided focal neural radiance field (GF-NeRF) that achieves high-fidelity rendering of large-scale scenes. Our proposed GF-NeRF utilizes a two-stage (Global and Focal) architecture and a global-guided training strategy. The global stage obtains a continuous representation of the entire scene while the focal stage decomposes the scene into multiple blocks and further processes them with distinct sub-encoders. Leveraging this two-stage architecture, sub-encoders only need fine-tuning based on the global encoder, thus reducing training complexity in the focal stage while maintaining scene-wide consistency. Spatial information and error information from the global stage also benefit the sub-encoders to focus on crucial areas and effectively capture more details of large-scale scenes. Notably, our approach does not rely on any prior knowledge about the target scene, attributing GF-NeRF adaptable to various large-scale scene types, including street-view and aerial-view scenes. We demonstrate that our method achieves high-fidelity, natural rendering results on various types of large-scale datasets. Our project page: https://shaomq2187.github.io/GF-NeRF/
Abstract:SemEval-2024 Task 8 introduces the challenge of identifying machine-generated texts from diverse Large Language Models (LLMs) in various languages and domains. The task comprises three subtasks: binary classification in monolingual and multilingual (Subtask A), multi-class classification (Subtask B), and mixed text detection (Subtask C). This paper focuses on Subtask A & B. Each subtask is supported by three datasets for training, development, and testing. To tackle this task, two methods: 1) using traditional machine learning (ML) with natural language preprocessing (NLP) for feature extraction, and 2) fine-tuning LLMs for text classification. The results show that transformer models, particularly LoRA-RoBERTa, exceed traditional ML methods in effectiveness, with majority voting being particularly effective in multilingual contexts for identifying machine-generated texts.