refer to the report for detailed contributions
Abstract:Current language models (LMs) excel at reasoning over prompts using pre-trained knowledge. However, real-world tasks are far more complex and context-dependent: models must learn from task-specific context and leverage new knowledge beyond what is learned during pre-training to reason and resolve tasks. We term this capability context learning, a crucial ability that humans naturally possess but has been largely overlooked. To this end, we introduce CL-bench, a real-world benchmark consisting of 500 complex contexts, 1,899 tasks, and 31,607 verification rubrics, all crafted by experienced domain experts. Each task is designed such that the new content required to resolve it is contained within the corresponding context. Resolving tasks in CL-bench requires models to learn from the context, ranging from new domain-specific knowledge, rule systems, and complex procedures to laws derived from empirical data, all of which are absent from pre-training. This goes far beyond long-context tasks that primarily test retrieval or reading comprehension, and in-context learning tasks, where models learn simple task patterns via instructions and demonstrations. Our evaluations of ten frontier LMs find that models solve only 17.2% of tasks on average. Even the best-performing model, GPT-5.1, solves only 23.7%, revealing that LMs have yet to achieve effective context learning, which poses a critical bottleneck for tackling real-world, complex context-dependent tasks. CL-bench represents a step towards building LMs with this fundamental capability, making them more intelligent and advancing their deployment in real-world scenarios.
Abstract:Vision Language Action (VLA) models close the perception action loop by translating multimodal instructions into executable behaviors, but this very capability magnifies safety risks: jailbreaks that merely yield toxic text in LLMs can trigger unsafe physical actions in embodied systems. Existing defenses alignment, filtering, or prompt hardening intervene too late or at the wrong modality, leaving fused representations exploitable. We introduce a concept-based dictionary learning framework for inference-time safety control. By constructing sparse, interpretable dictionaries from hidden activations, our method identifies harmful concept directions and applies threshold-based interventions to suppress or block unsafe activations. Experiments on Libero-Harm, BadRobot, RoboPair, and IS-Bench show that our approach achieves state-of-the-art defense performance, cutting attack success rates by over 70\% while maintaining task success. Crucially, the framework is plug-in and model-agnostic, requiring no retraining and integrating seamlessly with diverse VLAs. To our knowledge, this is the first inference-time concept-based safety method for embodied systems, advancing both interpretability and safe deployment of VLA models.
Abstract:Recent research shows that modern deep learning models achieve high predictive accuracy partly by memorizing individual training samples. Such memorization raises serious privacy concerns, motivating the widespread adoption of differentially private training algorithms such as DP-SGD. However, a growing body of empirical work shows that DP-SGD often leads to suboptimal generalization performance, particularly on long-tailed data that contain a large number of rare or atypical samples. Despite these observations, a theoretical understanding of this phenomenon remains largely unexplored, and existing differential privacy analysis are difficult to extend to the nonconvex and nonsmooth neural networks commonly used in practice. In this work, we develop the first theoretical framework for analyzing DP-SGD on long-tailed data from a feature learning perspective. We show that the test error of DP-SGD-trained models on the long-tailed subpopulation is significantly larger than the overall test error over the entire dataset. Our analysis further characterizes the training dynamics of DP-SGD, demonstrating how gradient clipping and noise injection jointly adversely affect the model's ability to memorize informative but underrepresented samples. Finally, we validate our theoretical findings through extensive experiments on both synthetic and real-world datasets.
Abstract:We provide the first study of the problem of finding differentially private (DP) second-order stationary points (SOSP) in stochastic (non-convex) minimax optimization. Existing literature either focuses only on first-order stationary points for minimax problems or on SOSP for classical stochastic minimization problems. This work provides, for the first time, a unified and detailed treatment of both empirical and population risks. Specifically, we propose a purely first-order method that combines a nested gradient descent--ascent scheme with SPIDER-style variance reduction and Gaussian perturbations to ensure privacy. A key technical device is a block-wise ($q$-period) analysis that controls the accumulation of stochastic variance and privacy noise without summing over the full iteration horizon, yielding a unified treatment of both empirical-risk and population formulations. Under standard smoothness, Hessian-Lipschitzness, and strong concavity assumptions, we establish high-probability guarantees for reaching an $(α,\sqrt{ρ_Φα})$-approximate second-order stationary point with $α= \mathcal{O}( (\frac{\sqrt{d}}{n\varepsilon})^{2/3})$ for empirical risk objectives and $\mathcal{O}(\frac{1}{n^{1/3}} + (\frac{\sqrt{d}}{n\varepsilon})^{1/2})$ for population objectives, matching the best known rates for private first-order stationarity.
Abstract:Protein language models (PLMs) have enabled advances in structure prediction and de novo protein design, yet they frequently collapse into pathological repetition during generation. Unlike in text, where repetition merely reduces readability, in proteins it undermines structural confidence and functional viability. To unify this problem, we present the first systematic study of repetition in PLMs. We first propose quantitative metrics to characterize motif-level and homopolymer repetition and then demonstrate their negative impact on folding reliability. To address this challenge, we propose UCCS (Utility-Controlled Contrastive Steering), which steers protein generation with a constrained dataset. Instead of naively contrasting high- vs. low-repetition sequences, we construct contrastive sets that maximize differences in repetition while tightly controlling for structural utility. This disentanglement yields steering vectors that specifically target repetition without degrading foldability. Injected at inference, these vectors consistently reduce repetition without retraining or heuristic decoding. Experiments with ESM-3 and ProtGPT2 in CATH, UniRef50, and SCOP show that our method outperforms decoding penalties and other baselines, substantially lowering repetition while preserving AlphaFold confidence scores. Our results establish repetition control as a central challenge for PLMs and highlight dataset-guided steering as a principled approach for reliable protein generation.
Abstract:Large Language Models (LLMs) have demonstrated strong capabilities for hidden representation interpretation through Patchscopes, a framework that uses LLMs themselves to generate human-readable explanations by decoding from internal hidden representations. However, our work shows that LLMs tend to rely on inherent linguistic patterns, which can override contextual information encoded in the hidden representations during decoding. For example, even when a hidden representation encodes the contextual attribute "purple" for "broccoli", LLMs still generate "green" in their explanations, reflecting a strong prior association. This behavior reveals a systematic unfaithfulness in Patchscopes. To systematically study this issue, we first designed a dataset to evaluate the faithfulness of Patchscopes under biased cases, and our results show that there is an 18.84\% faithfulness decrease on average. We then propose Bias Alignment through Logit Recalibration (BALOR), which treats the output logits from an unpatched prompt as capturing model bias and contrasts them with logits obtained under patched contextual information. By recalibrating the logit distribution through this contrast, BALOR suppresses model bias and amplifies contextual information during generation. Experiments across multiple LLMs demonstrate that BALOR consistently outperforms existing baselines, achieving up to 33\% relative performance improvement.
Abstract:Reliable data attribution is essential for mitigating bias and reducing computational waste in modern machine learning, with the Shapley value serving as the theoretical gold standard. While recent "In-Run" methods bypass the prohibitive cost of retraining by estimating contributions dynamically, they heavily rely on the linear structure of Stochastic Gradient Descent (SGD) and fail to capture the complex dynamics of adaptive optimizers like Adam. In this work, we demonstrate that data attribution is inherently optimizer-dependent: we show that SGD-based proxies diverge significantly from true contributions under Adam (Pearson $R \approx 0.11$), rendering them ineffective for modern training pipelines. To bridge this gap, we propose Adam-Aware In-Run Data Shapley. We derive a closed-form approximation that restores additivity by redefining utility under a fixed-state assumption and enable scalable computation via a novel Linearized Ghost Approximation. This technique linearizes the variance-dependent scaling term, allowing us to compute pairwise gradient dot-products without materializing per-sample gradients. Extensive experiments show that our method achieves near-perfect fidelity to ground-truth marginal contributions ($R > 0.99$) while retaining $\sim$95\% of standard training throughput. Furthermore, our Adam-aware attribution significantly outperforms SGD-based baselines in data attribution downstream tasks.
Abstract:Large Language Models (LLMs) increasingly exhibit strong reasoning abilities, often attributed to their capacity to generate chain-of-thought-style intermediate reasoning. Recent work suggests that exposure to code can further enhance these skills, but existing studies largely treat code as a generic training signal, leaving open the question of which properties of code actually contribute to improved reasoning. To address this gap, we study the structural complexity of code, which captures control flow and compositional structure that may shape how models internalise multi-step reasoning during fine-tuning. We examine two complementary settings: solution-driven complexity, where complexity varies across multiple solutions to the same problem, and problem-driven complexity, where complexity reflects variation in the underlying tasks. Using cyclomatic complexity and logical lines of code to construct controlled fine-tuning datasets, we evaluate a range of open-weight LLMs on diverse reasoning benchmarks. Our findings show that although code can improve reasoning, structural properties strongly determine its usefulness. In 83% of experiments, restricting fine-tuning data to a specific structural complexity range outperforms training on structurally diverse code, pointing to a data-centric path for improving reasoning beyond scaling.
Abstract:Direct Preference Optimization (DPO) controls the trade-off between fitting preference labels and staying close to a reference model using a single global temperature beta, implicitly treating all preference pairs as equally informative. Real-world preference corpora are heterogeneous: they mix high-signal, objective failures (for example, safety, factuality, instruction violations) with low-signal or subjective distinctions (for example, style), and also include label noise. We introduce our method, SP2DPO (Semantic Per-Pair DPO), a generalization that replaces the global temperature with an instance-specific schedule beta_i pre-decided offline from structured semantic-gap annotations (category, magnitude, confidence) produced by teacher language models. We instantiate this procedure on the UltraFeedback preference corpus (59,960 pairs), enabling large-scale construction of an auditable beta_i artifact, and incur zero training-time overhead: the inner-loop optimizer remains standard DPO with beta set per pair. We focus our empirical study on AlpacaEval 2.0, reporting both raw win rate and length-controlled win rate. Across four open-weight, instruction-tuned student backbones (4B-8B), SP2DPO is competitive with a tuned global-beta DPO baseline and improves AlpacaEval 2.0 length-controlled win rate on two of four backbones, while avoiding per-model beta sweeps. All code, annotations, and artifacts will be released.
Abstract:We introduce AutoMonitor-Bench, the first benchmark designed to systematically evaluate the reliability of LLM-based misbehavior monitors across diverse tasks and failure modes. AutoMonitor-Bench consists of 3,010 carefully annotated test samples spanning question answering, code generation, and reasoning, with paired misbehavior and benign instances. We evaluate monitors using two complementary metrics: Miss Rate (MR) and False Alarm Rate (FAR), capturing failures to detect misbehavior and oversensitivity to benign behavior, respectively. Evaluating 12 proprietary and 10 open-source LLMs, we observe substantial variability in monitoring performance and a consistent trade-off between MR and FAR, revealing an inherent safety-utility tension. To further explore the limits of monitor reliability, we construct a large-scale training corpus of 153,581 samples and fine-tune Qwen3-4B-Instruction to investigate whether training on known, relatively easy-to-construct misbehavior datasets improves monitoring performance on unseen and more implicit misbehaviors. Our results highlight the challenges of reliable, scalable misbehavior monitoring and motivate future work on task-aware designing and training strategies for LLM-based monitors.