refer to the report for detailed contributions
Abstract:Painting textures for existing geometries is a critical yet labor-intensive process in 3D asset generation. Recent advancements in text-to-image (T2I) models have led to significant progress in texture generation. Most existing research approaches this task by first generating images in 2D spaces using image diffusion models, followed by a texture baking process to achieve UV texture. However, these methods often struggle to produce high-quality textures due to inconsistencies among the generated multi-view images, resulting in seams and ghosting artifacts. In contrast, 3D-based texture synthesis methods aim to address these inconsistencies, but they often neglect 2D diffusion model priors, making them challenging to apply to real-world objects To overcome these limitations, we propose RomanTex, a multiview-based texture generation framework that integrates a multi-attention network with an underlying 3D representation, facilitated by our novel 3D-aware Rotary Positional Embedding. Additionally, we incorporate a decoupling characteristic in the multi-attention block to enhance the model's robustness in image-to-texture task, enabling semantically-correct back-view synthesis. Furthermore, we introduce a geometry-related Classifier-Free Guidance (CFG) mechanism to further improve the alignment with both geometries and images. Quantitative and qualitative evaluations, along with comprehensive user studies, demonstrate that our method achieves state-of-the-art results in texture quality and consistency.
Abstract:Physically-based rendering (PBR) has become a cornerstone in modern computer graphics, enabling realistic material representation and lighting interactions in 3D scenes. In this paper, we present MaterialMVP, a novel end-to-end model for generating PBR textures from 3D meshes and image prompts, addressing key challenges in multi-view material synthesis. Our approach leverages Reference Attention to extract and encode informative latent from the input reference images, enabling intuitive and controllable texture generation. We also introduce a Consistency-Regularized Training strategy to enforce stability across varying viewpoints and illumination conditions, ensuring illumination-invariant and geometrically consistent results. Additionally, we propose Dual-Channel Material Generation, which separately optimizes albedo and metallic-roughness (MR) textures while maintaining precise spatial alignment with the input images through Multi-Channel Aligned Attention. Learnable material embeddings are further integrated to capture the distinct properties of albedo and MR. Experimental results demonstrate that our model generates PBR textures with realistic behavior across diverse lighting scenarios, outperforming existing methods in both consistency and quality for scalable 3D asset creation.
Abstract:We present Hunyuan3D 2.0, an advanced large-scale 3D synthesis system for generating high-resolution textured 3D assets. This system includes two foundation components: a large-scale shape generation model -- Hunyuan3D-DiT, and a large-scale texture synthesis model -- Hunyuan3D-Paint. The shape generative model, built on a scalable flow-based diffusion transformer, aims to create geometry that properly aligns with a given condition image, laying a solid foundation for downstream applications. The texture synthesis model, benefiting from strong geometric and diffusion priors, produces high-resolution and vibrant texture maps for either generated or hand-crafted meshes. Furthermore, we build Hunyuan3D-Studio -- a versatile, user-friendly production platform that simplifies the re-creation process of 3D assets. It allows both professional and amateur users to manipulate or even animate their meshes efficiently. We systematically evaluate our models, showing that Hunyuan3D 2.0 outperforms previous state-of-the-art models, including the open-source models and closed-source models in geometry details, condition alignment, texture quality, and etc. Hunyuan3D 2.0 is publicly released in order to fill the gaps in the open-source 3D community for large-scale foundation generative models. The code and pre-trained weights of our models are available at: https://github.com/Tencent/Hunyuan3D-2
Abstract:Domain adaptation has received a lot of attention in recent years, and many algorithms have been proposed with impressive progress. However, it is still not fully explored concerning the joint probability distribution (P(X, Y)) distance for this problem, since its empirical estimation derived from the maximum mean discrepancy (joint maximum mean discrepancy, JMMD) will involve complex tensor-product operator that is hard to manipulate. To solve this issue, this paper theoretically derives a unified form of JMMD that is easy to optimize, and proves that the marginal, class conditional and weighted class conditional probability distribution distances are our special cases with different label kernels, among which the weighted class conditional one not only can realize feature alignment across domains in the category level, but also deal with imbalance dataset using the class prior probabilities. From the revealed unified JMMD, we illustrate that JMMD degrades the feature-label dependence (discriminability) that benefits to classification, and it is sensitive to the label distribution shift when the label kernel is the weighted class conditional one. Therefore, we leverage Hilbert Schmidt independence criterion and propose a novel MMD matrix to promote the dependence, and devise a novel label kernel that is robust to label distribution shift. Finally, we conduct extensive experiments on several cross-domain datasets to demonstrate the validity and effectiveness of the revealed theoretical results.
Abstract:Facial expression manipulation, as an image-to-image translation problem, aims at editing facial expression with a given condition. Previous methods edit an input image under the guidance of a discrete emotion label or absolute condition (e.g., facial action units) to possess the desired expression. However, these methods either suffer from changing condition-irrelevant regions or are inefficient to preserve image quality. In this study, we take these two objectives into consideration and propose a novel conditional GAN model. First, we replace continuous absolute condition with relative condition, specifically, relative action units. With relative action units, the generator learns to only transform regions of interest which are specified by non-zero-valued relative AUs, avoiding estimating the current AUs of input image. Second, our generator is built on U-Net architecture and strengthened by multi-scale feature fusion (MSF) mechanism for high-quality expression editing purpose. Extensive experiments on both quantitative and qualitative evaluation demonstrate the improvements of our proposed approach compared with the state-of-the-art expression editing methods.